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1. Introduction

A useful starting point for elucidating the factors that
determine the activation barrier in many condensed-phase
and enzyme-catalyzed reactions is an understanding of the
intrinsic reactivity of the uncatalyzed reaction in the gas
phase. Subsequently, the effect of solvation and/or catalysis
can be considered. For example, a computation of the change
of a reaction’s activation barrier from aqueous solution to
an enzyme can be very informative, although it is not
sufficient to generate a complete picture of enzyme catalysis1

nor adequate to validate the potential energy surface and
computational techniques.1,2 Valence bond (VB) theory
provides a fundamental framework for this purpose because
of its direct connection to concepts such as chemical bonding,
reactivity, and electronic resonance.3 When ab initio self-
consistent-field valence bond (VBSCF) theory is represented
in terms of a two-state model,4 describing the interactions
between the reactant and the product diabatic states, the
intuitive nature of such a simple model is particularly useful
both for understanding and for computation. However, when
such a multiconfigurational VB wave function is reduced to
a two-state representation, the construction of these two states
is not unique, as we illustrate in this article, and this can
lead to different interpretations of chemical reactivity and
the origin of solvent effects. Consequently, it is essential to
carefully examine the nature of a specific two-state VB model
before it is applied to chemical reactions in solution and in
enzymes. In this article, we aim to provide a perspective on
different ways of constructing diabatic states, and we discuss
some limitations on their usefulness for describing the
potential energy surface of the adiabatic ground state.

Consider, for a more specific example, the haloalkane
dehalogenase catalytic cycle. The haloalkane dehalogenase

enzyme catalyzes the hydrolytic cleavage of carbon-halogen
bonds in a broad range of halogenated alkanes to yield the
corresponding alcohol with concomitant release of the halide
anion.5-11 The efficiency of the enzymatic conversion is
maximal with 1,2-dichloroethane (DCE) as the substrate.8

The catalytic action of haloalkane dehalogenase has been
shown to consist of two chemical reaction steps. The first
step involves a nucleophilic substitution (SN2) reaction in
which the carboxylate group of Asp124 attacks the haloge-
nated hydrocarbon, displacing the halide anion and forming
an enzyme-ester covalent intermediate.5 The second step is
the hydrolysis of the intermediate by an activated water
molecule, assisted by His289 and Asp260 residues of the
enzyme, to yield the alcohol and to return the enzyme to its
native form for the next catalytic cycle.6 The factors that
affect the catalytic efficiency of the enzyme have been the
focus of many theoretical studies.12-32 The reactions of
several nucleophiles (hydroxide, formate, and acetate) with
substrates such as methyl chloride, chloroethane, and DCE
have been used to mimic the attack of the Asp124 residue
of haloalkane dehalogenase on a haloalkane.13,14,20,22,23 Many
theoretical studies of SN2 reactions in the gas phase and in
solution, including those just cited, have made use of ab initio
or semiempirical molecular orbital or post-Hartree-Fock
electronic structure calculations.33-49 Nucleophilic substitu-
tion reactions have also been investigated by density
functional theory.41,48,50-53 The use of valence-bond (VB)
theory to study these reactions quantitatively is less common
because of the higher computational cost and slow conver-
gence (with respect to adding configurations) of VB calcula-
tions, but VB theory has the advantage of providing unique
insight into the electronic structure.54-59 Examples of
nucleophilic substitution reactions studied using VB meth-
odology include the identity X- + RX′ f XR + X′-
reactions (R ) alkyl; X, X′ ) F, Cl, Br, I);54-57,60-68

nonidentity versions of these reactions (X not the same as
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X′);54-57 the Cl- + CH3SH2
+ f ClCH3 + SH2 and H3N +

CH3SH2
+f H3NCH3

+ + SH2 reactions;61 the particular case
CH3Cl + NH3f Cl- + CH3NH3

+ of the general Menshutkin
reaction;55,58,69-72 reactions of esters and ketyl radical
anions;56,73 reactions at peptide bonds;74 and reaction at
phosphorus.75

A challenging question in condensed-phase reaction
dynamics is the definition of the reaction coordinate.
Arguably, the choices that have been made may be divided
into two categories: (1) the use of a set of solute geometrical
variables or a combination of approximate functions of
relevant bond orders that vary systematically from the
reactants to the products and (2) the use of a generalized
solvent coordinate such as, in the Marcus theory of electron
transfer reactions, the energy gap between the reactant and
product diabatic states. In the first case, two common choices
are (i) an analytic function of internal coordinates, such as
the breaking and forming bond distances, or the distance
between the reactants and (ii) the distance along a union of
the steepest descent paths in mass-scaled coordinates from
the saddle point to reactants and products. Choice (i)76-80

is usually called a distinguished reaction coordinate, and
choice (ii)80-86 is called a minimum-energy-path (MEP)
coordinate or an intrinsic reaction coordinate.

Sometimes one considers an ensemble of reaction paths
and hence of reaction coordinates, as in ensemble-averaged
variational transition state theory87,88 and in the transition
path sampling method,89 but we shall not need to consider
such theories for the present perspective article.

In category (2), the energy gap is typically defined as the
difference in energy between two diabatic states of the
reagents (also called “solute” or “primary subsystem”), one
representing the reactants and the other representing
the products, with both including their interactions with their
surroundings (also called “solvent” or “bath” or “secondary
subsystem”). For example, for an outer-sphere electron
transfer reaction, the product state differs from the reactant
state by the rearrangement of one electron, and the energy
difference between these states is a function of the coordi-
nates and polarization state of the solvent. Thus a diabatic
energy gap can be considered to be a collective solvent
coordinate. Such a diabatic gap was originally invoked by
Marcus90,91 in weak-overlap electron transfer theory and has
subsequently been used more broadly to describe other
charge transfer processes in the condensed phase.61,62,92-107

Othercollectivesolventcoordinateshavealsobeenused.108-116

In addition, diabatic states and diabatic potential energy
surfaces (sometimes called quasiadiabatic states and distor-
tion potentials in this context) have sometimes been used
for dynamical treatments by using separate coordinate
systems for reactants and products.117-121

Although diabatic energy functions for condensed-phase
reactions were originally defined in terms of classical models,
for example, the nonequilibrium electronic polarization
energy of a dielectric medium interacting with a spherical
ion,122 progress in the treatment of complex reactions can
be achieved by using quantum mechanical electronic struc-
ture theory to define the diabatic states and calculate their
energies. The present article is primarily concerned with such

quantum mechanical calculations. When one uses electronic
structure theory to treat the Born-Oppenheimer dynamics of
complex systems, the nuclear coordinates are parameters in
the electronic Hamiltonian and electronic wave functions.
The electronic Hamiltonian (which is defined, as usual, to
include the nuclear repulsion) is diagonalized, and the
eigenvalues as functions of nuclear coordinates are the
(adiabatic) potential energy surfaces for nuclear motion. That
is called the adiabatic representation. Here we employ an
analogous treatment for a two-state diabatic representation.
In this representation, the electronic Hamiltonian (which in
general is Hermitean and here is assumed real symmetric,
so there is only one unique off-diagonal element) is not
diagonal. The diagonal matrix elements are the diabatic
potential energy surfaces, and the off-diagonal Hamiltonian
matrix element is the diabatic coupling which decreases the
energy as compared to the diabatic crossing energy, thereby
stabilizing the transition state of the adiabatic ground
state.123-126

In previous work, the diabatic potential energy surfaces
have often been modeled without explicit calculations of
electronic wave functionssfor example by molecular me-
chanics such as in the Warshel-Weiss empirical valence bond
formalism92-103 (we shall abbreviate this specific formalism
as EVB; other VB treatmentssboth older and newerswith
empirical elements are called semiempirical VB to distin-
guish them from EVB), by solvent dielectric continuum
theory,122 by linear response theory,127 or by phenomeno-
logical fitting of reaction rates.62,128,129 The EVB model treats
the diabatic coupling as a parametrized function—typically,
as for example in the case considered here,21 as a constant.
Further, a fundamental assumption of the EVB model is that
the overlap integral between the diabatic states is zero.
However, this model has been found to be insufficient to
reproduce the vibrational frequencies at the transition
state.130,131 As a result, the EVB model is not well suited
for computing detailed rate quantities such as kinetic isotope
effects that require an accurate treatment of the potential
energy surface, the zero-point energy (ZPE), and quantum
mechanical tunneling.2 In other semiempirical VB models,
the overlap-dependence of the diabatic coupling is treated
implicitly by parametrizing the off-diagonal element to fit
the entire adiabatic potential surface. Methods in the latter
category include molecular mechanics with valence bond
(MMVB),132 multiconfigurational molecular mechanics
(MCMM),116,133,134 multistate empirical valence bond (MS-
EVB),135 and the generalized Gaussian algorithm of Chang
and Miller130 and Schlegel and Sonnenberg.131

In contrast, the fourfold way and mixed molecular orbital
and valence bond (MOVB) methods that we describe in this
article use electronic structure theory to derive the diabatic
states; the ability of electronic structure theory to predict
details of potential energy surfaces (such as vibrational
frequencies) is one motivation for using quantum mechanical
electronic structure theory in the diabatic formalism.

In comparing theories of diabatic states, it is important to
keep in mind that diabatic electronic states are not uniquely
defined,4,59,105,136-141 and a number of definitions have
proved useful in various contexts. Many of these, whether

2 J. Chem. Theory Comput., Vol. 5, No. 1, 2009 Perspective



or not quantum mechanics is explicitly employed, are most
easily understood in terms of VB theory.4,59,136,141-149 In
VB theory, an electronic configuration state function (CSF)
with a definite bonding pattern and set of formal atomic
charges is called a VB structure. Note that, depending on
the state, a VB structure may be a single Slater determinant
or a linear combination of determinants. A resonance
structure may be expressed in terms of one or more VB
structures. For example, in VB theory, the wave function
for the resonance structure of the HCl molecule can be
written as a linear combination of a covalent (Heitler-
London) VB structure which is described by two Slater
determinants for the spin pairing between the two electrons
that form the single bond, and two ionic VB structures ([H+

Cl-] and [H- Cl+]), each of which is represented by a single
Slater determinant. In discussion, it is important to distinguish
between VB structures (single CSFs) and VB resonance wave
functions (linear combinations of CSFs); the latter will
usually be called configuration interaction wave functions.
Although the electronic wave function for a given VB
structure changes when the coordinates of the nuclei change,
it varies gradually, and it retains a recognizable bonding
pattern even globally; Hartree-Fock (HF) wave functions may
change suddenly, and they may also change the bonding
pattern. Furthermore, HF orbitals, unlike VB orbitals, do not
have a definite atomic parentage. In the original VB theory
of Heitler, London, Slater, and Pauling, a VB structure
changes only because the fixed atomic orbitals in terms of
which it is defined move with the nuclei; in modern VB
theory, such as generalized valence bond150 (GVB) or
valence bond self-consistent field151 (VBSCF), the defining
orbitals also breathe and polarize and may even delocalize
across a bond.152

One approximation used in the EVB formalism92-103 is
that the partial atomic charges of the EVB states are assumed
to be independent of the reaction coordinate and are based
on reactant and product molecular mechanics parameters.
In VB theory, this is equivalent to assuming that the ionic
character of a VB structure is invariant to changes in geo-
metry and external field, which is a severe approximation.62,63

Among other consequences, it implies that the partial charges
on VB structures are the same in the gas phase, in solution,
or in enzymes. Although in principle, it is possible to make
the atomic partial charges in EVB-type models dependent
on molecular structure, it is rarely done, and such a procedure
is laborious for chemical reactions.68,75 Overcoming this kind
of limitation of molecular mechanics-based treatments is
another motivation for calculating diabatic potentials by using
quantum mechanical electronic structure theory.

The first wave function approach considered in this article
is the mixed molecular orbital and valence bond (MOVB)
method.60,141 The MOVB method constructs VB-like diabatic
states by a block localization procedure applied to molecular
orbital calculations.153-160 Two MOVB schemes are con-
sidered:4 in one, called the variational diabatic configuration
(VDC) scheme, the energies of the diabatic states are each
variationally optimized and in another, called consistent
diabatic configuration (CDC) scheme, the energy of the
adiabatic ground state is variationally minimized.

The other approach that we will use to define diabatic
states is called the fourfold way;161-163 it is based on the
use a threefold density criterion and possibly one or more
reference orbitals to construct diabatic molecular orbitals
(DMOs), the use of these orbitals to define diabatic CSFs,
and the determination of diabatic states in terms of the
diabatic CSFs by configurational uniformity. This method
has its roots in the theory of photochemical reactions, and it
uses the concepts of DMOs161-164 and configurational
uniformity161-163,165,166 to determine diabatic states as
smoothly varying linear combinations of adiabatic CSFs;
since the diabatic states are smooth functions of geometry,
they resemble, to some extent, VB states.142 A key feature
of this method is that the diabatic states span exactly the
same space as the same number N (two in the example
considered here) of adiabatic states, which may be chosen
as the ground state and the (N–1) lowest-energy adiabatic
states orsas in the example considered heresas the ground
state and an excited adiabatic state with the charge character
of the product, so that the diabatic energy gap can serve as
a reaction coordinate. A second key feature is that one can
base the method on correlated wave functions, which are
more accurate than HF ones.

In the present work, we illustrate the diabatization methods
by applying them all to the same example. The example
chosen is the SN2 reaction of acetate ion with DCE in the
gas phase

CH3CO2
-+ClCH2CH2ClfCH3CO2 -CH2CH2Cl+Cl-

(1)

which is motivated by the haloalkane dehalogenase reaction
discussed in the second paragraph. Although the main focus
is on the definition of diabatic states for the gas-phase
reaction, we also consider the reaction in water to compare
the free energies of solvation and activation obtained with
the EVB PES with those reported in the literature.21,28 In
addition to serving as a model SN2 reaction, reaction 1 is of
interest for developing bioremediation strategies. The pro-
duction of halogenated hydrocarbons for use as herbicides,
pesticides, refrigerants, or solvents has given rise to envi-
ronmental concerns due to their toxicity and possible role
as carcinogenic agents.167 A possible route for bioremediation
of contaminated soils and waters168-170 involves the action
of the haloalkane dehalogenase enzyme5-11,171-173 present
in, for instance, the bacterium Xanthobacter autotrophicus
GJ10.

The remainder of the article is organized as follows.
Section 2.1 reviews the general valence bond framework for
the treatment of SN2 reactions. In section 2.2 the electronic
structure methods used to determine the adiabatic and
diabatic electronic states are introduced. The fourfold way
with configuration uniformity algorithm for diabatization is
explained in section 2.3, and the details of its application to
the acetate + DCE reaction are given in the Appendix. The
MOVB method is explained in section 2.4. The definition
of diabatic coupling for nonorthogonal and orthogonal
MOVB wave functions is detailed in section 2.5. The main
features of the EVB theory are sketched in section 2.6. The
method used to calculate free energies of solvation and
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activation in water is presented in section 2.7. Sections 2.8
presents the basis sets employed. The main results of the
present study are presented in section 3. Section 3.1 contains
the definition of reaction coordinate and reaction path for
the acetate + DCE reaction. The adiabatic energy profiles
obtained along the reaction path are presented and discussed
in section 3.2, where the accuracy of the adiabatic reaction
energy and barrier height is assessed by comparing them to
high-level calculations. Section 3.3 present a detailed com-
parison of the diabatic energies and couplings obtained with
the different methods. Section 3.4 is concerned with the
solvation and activation free energies of the reaction in water.
Finally, the conclusions are presented in section 4.

2. Theory and Methods

2.1. Valence-Bond Treatment of SN2 Reactions. The
general scheme for the treatment of SN2 reactions using VB
theory has been developed in a number of previous
works.4,55,56,64,66,174,175 The reaction :X- + R-Y f X-R +
:Y-, where :X- and :Y- are the nucleophile and the leaving
group, respectively, and R is an alkyl group, can be used to
illustrate the general case. Four electrons participate directly
in the nucleophilic displacement, i.e., two from the reactant
nucleophile :X- and two from the R-Y bond. If these
electrons are distributed among the three frontier orbitals of
the three fragments (X, R, and Y), a total of six VB structures
can be generated,64 which are depicted below:

X:-R-Y X-R : Y- X:-R+ : Y-

1 2 3

X:- : R-Y+ X · : R- ·Y X+ : R- : Y-

4 5 6

(2)

The VB many-electron wave function is expressed as a linear
combination of the CSFs that correspond to the six VB
structures in eq 2. Structures 1 and 2 represent Heitler-
London covalent configurations, each of which consists of
two Slater determinants, and have the largest weights,
corresponding to the reactant and the product state, respec-
tively. They are the dominant configurations, and a minimal
description of the diabatic states must always include
them.4,56,174,175 Structure 3 is the triple-ion configuration that
is most stable and has the greatest resemblance to the
transition state. The VB configuration correlation diagram56

of these resonance structures for the acetate + DCE reaction
is shown in Figure 1. The VB picture of an SN2 reaction is
that the VB configurations corresponding to structures 1 and
2, “dressed” by the proper ionic configurations,56 experience
an avoided crossing along the reaction coordinate, and their
interaction gives rise to two adiabatic states.56,174,175 The
excited adiabatic state assumed in this scheme has in fact
been detected in photoexcitation experiments.176,177 The
ground state has a reaction barrier, and the excited state has
a local minimum at approximately the same geometric
location, corresponding to the crossing point of the diabatic
states (Figure 1). The VB studies performed on SN2 reactions
in the gas phase and in solution have found that the use of
structures 1, 2, and 3 is sufficient to obtain quantitative results
because in structures 4, 5, and 6 a negative charge is placed
on a less electronegative atom, resulting in high energies

and relatively small configuration weights in the VB wave
function.60,61,64-66 Nevertheless, structures 4 and 6 can play
significant roles in the definition and understanding of
diabatic states. Note that structure 5 represents a spin paired
interaction between two electrons, each localized on one of
the nonbonded atoms, in the presence of a doubly occupied
orbital. It corresponds to a charge-transfer excited state that
does not contribute to the nominal configuration interaction
wave function either for the reactant state or for the product
state. Nevertheless, structure 5 can mix with other VB
structures to stabilize the adiabatic ground state, and it has
the largest contribution at the transition state where the
molecular geometry is the most compact. We have found
that the effect of structure 5 in lowering the reaction barrier
is very small, less than 1 kcal/mol for a typical SN2 reaction.4

Thus, it is not essential to include structure 5 in defining the
diabatic and adiabatic states.

2.2. Electronic Structure Methods. The fourfold
way161-163 and the MOVB60,141 scheme are based on
different approaches to the construction of diabatic states.

In the fourfold way with configuration uniformity, adia-
batic states are generated first, and they are subsequently
transformed to an equivalent set of diabatic states; the
transformation also yields the diabatic energies and cou-
plings. In the general cases, to obtain good reaction energies
and barrier heights without empirical parameters, dynamic
electron correlation effects need to be included in the wave
function. In the present implementation, the state-averaged
CASSCF, or SA-CASSCF,178,179 method (in the state aver-
age, the ground state is weighted 75% and the excited state
25%) has been chosen to define configuration interaction (CI)
coefficients and MOs that are then used as the basis for
multiconfigurational quasidegenerate perturbation theory at
second order (MC-QDPT)180-182 to include dynamic cor-
relation. (Note that MC-QDPT is very similar to another well
known method called multistate complete-active-space second-
order perturbation theory183 (MS-CASPT2)). The CASSCF
active space has been selected in analogy to the discussion
of section 2.1. Thus, the active space is formed by four
electrons in three active MOs. The four active electrons
correspond to two electrons from one of the attacking oxygen

Figure 1. Reactant and product VB structures and schematic
correlation diagram for the acetate + DCE SN2 reaction.
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atoms in the acetate ion and the two electrons in the C-Cl
bond of DCE. The three active MOs are the oxygen lone
pair centered on the attacking oxygen of CH3CO2

-, one of
the p orbitals of Cl- in the products, and the σC-Cl

* orbital
delocalized over the three atoms that participate directly in
the forming and breaking bonds.

It is important to note that the excited electronic state used
in the fourfold way analysis is the first excited state of the
acetate + DCE system in the CASSCF calculations within
the active space chosen, but it is not the first excited state of
the system. The spectroscopic first singlet excited electronic
state in fact is the one that derives from an nfπ* transition
of the acetate ion. However, that electronic state is not
directly relevant to the nucleophilic substitution reaction and
is excluded in the present treatment. Here we formulate the
problem in terms of only the two crossing diabatic states
that correspond to the different bonding patterns (charge
arrangements) of the reactant and product. For this reason,
the active space chosen must be considered as a “model
space”.

TheMC-QDPTcalculationsuseamodified6-31+G(d)184-187

basis set called 6-31&G(d), which is explained in the
Appendix, which contains extra computational details not
germane to our focus.

The diabatic states in the MOVB method are generated
by following a different strategy. In MOVB, we first
construct VB states in terms of block-localized MOs for each
fragment in the corresponding VB structure. In the original
formulation of the MOVB method, the VB matrix elements
are determined analytically using nonorthogonal determinant
wave functions.60,141 In the limit of a single fragment in
which the MOs are fully delocalized, the MOVB state
reduces precisely to the HF limit. (The HF method is accurate
enough for the present SN2 example; in cases where electron
correlation effects must be included, the method can be
applied at the Kohn-Sham level rather than with HF.)

In order to obtain reference Walues for the relative energies
of the acetate + DCE ground-state potential energy surface
(PES), we have followed the strategy of choosing an accurate
yet computationally affordable method to carry out the
stationary point geometry optimizations and then using
these geometries to calculate refined relative energies using
high-level wave function methods. Thus, the geometry
optimizations were performed using the M06-2X188 density
functional with the MG3S189 basis set. The M06-2X func-
tional has been shown188 to provide accurate main-group
thermochemistry, kinetics, noncovalent interactions, and
electronic excitation energies to valence and Rydberg states.
The MG3S basis set is a multiply polarized basis of triple-�
quality that contains diffuse functions centered in all heavy
atoms and that was designed to provide accurate relative
energies in density functional theory. Three high-level
methods were used to perform single-point calculations on
the M06-2X/MG3S stationary point geometries, namely,
Gaussian-3X with scaled energies (G3SX),190-192 its MP3
version with a reduced order of perturbation theory
(G3SX(MP3)),192 and the BMC-CCSD193 multicoefficient
correlation method.194 These high-level calculations will be

denoted G3SX//M06-2X, G3SX(MP3)//M06-2X, and BMC-
CCSD//M06-2X, respectively.

The M06-2X density functional was also employed to
obtain reaction path geometries on the ground-state PES that
were then used to compute the MC-QDPT adiabatic and
diabatic reaction profiles. The ground-state reaction path was
also calculated with the B3LYP195-198 functional for com-
parison with the other methods. For the MOVB method,
diabatic energies were calculated at the optimized ground-
state adiabatic reaction path geometries obtained at the HF
level.

Note that in this work we are only concerned with the
segment of the reaction path that connects the reactant ion-
molecule complex and the product ion-molecule complex
of the gas-phase SN2 reaction, by analogy with the structures
relevant to the SN2 step of the haloalkane dehalogenase
catalytic cycle.12-32 Thus, infinitely separated reactants and
products are not considered in the present study.

2.3. Fourfold Way Algorithm for Diabatization. The
fourfold way161-163 is a direct diabatization method that has
been applied successfully in our group to determining the
first two singlet diabatic electronic states of the Li + FH f
LiF + H162 and the HNCO f HN + CO, H + NCO163

reactions, to the construction of global diabatic PESs for the
ground and first singlet excited electronic states of NH3,

199,200

and to the calculation of the six lowest singlet diabatic states
of the photodissociation reactions of BrCH2C(O)Cl201 and
BrCH2Cl202 along the C-Br and C-Cl dissociative reaction
coordinates. The key principles of fourfold way with
configurational uniformity161-163 are the construction of
suitable DMOs and their use to construct diabatic configu-
ration state functions (DCSFs) that are employed to enforce
configurational uniformity on the multiconfiguration wave
function of the CASSCF or MC-QDPT step; here we use
the latter. The DMOs and the DCSFs must have three pro-
perties: (1) they must be uniquely defined at each nuclear
configuration, (2) they must be smooth along continuous
nuclear-coordinate paths, and (3) when the multiconfigura-
tional wave functions are expressed in terms of DMOs, each
state must be dominated by at most a few DCSFs in regions
where the electronic states are weakly interacting. To
construct DMOs, the one-electron density matrices and
transition density matrices are used to define the functional

D3(RN,RR,RT))RNDNO +RRDNO +RTDTD (3)

where RN, RR, and RT are parameters usually set to the values
2, 1, and 0.5 (we use the standard values in the present work),
DNO is a natural orbital density matrix, DON is an occupation
number density matrix, and DTD is a transition density matrix.
The criterion for constructing DMOs based on maximization
of the D3 functional is called the threefold density criterion.
For some systems (including the present one), one needs
additional constraints on MO uniformity. This is done by
introducing a set of λ reference MOs and defining a new
term, called the reference overlap term, which contains an
overlap-like quantity between the MOs at the current
geometry and the reference MOs. Use of eq 3 without
reference orbitals is called the threefold way; when one or
more reference MO is included, the method is called the

Perspective J. Chem. Theory Comput., Vol. 5, No. 1, 2009 5



fourfold way, since it depends on the three functionals in eq
3 and on the set of reference MOs.

The DMOs are used to construct orthonormal DCSFs that
are distributed into groups, with each group spanning a
characteristic subspace that defines a diabatic state. The basic
requirement is that the group list be the same for all nuclear
geometries. The adiabatic many-electron wave functions are
finally expressed in the basis of the DCSFs, and their CI
coefficients are used to define the adiabatic-to-diabatic
transformation matrix which is then used to generate the
diabatic energy matrix. Diagonalization of the diabatic matrix
gives back the adiabatic energy matrix.

The fourfold way yields two VB-like configurations that
correspond to the covalent VB structures of eq 2 (i.e.,
structures 1 and 2, each mixed with structure 3 proportion-
ally); these configurations may be called resonance60,203,204

structures. The bonding patterns of these resonance configu-
rations in the reactant and product regions of the acetate +
DCE system are shown in Figure 1.

The role of the reference MOs for the acetate + DCE
reaction is somewhat different than for most reactions studied
previously199-202 with the fourfold way, but it is analogous
to that in the two-arrangement reaction Li + FH f LiF +
H.162 In most cases199-202 studied so far, the reference MOs
are introduced to fix the orientation of the DMOs that are
localized on a given atom but that become degenerate with
other orbitals at either reactants or products, and whose
coefficients would otherwise mix with the other degenerate
orbitals along the reaction coordinate making it impos-
sible to define consistent groups of DCSFs. In the case of
acetate + DCE, the reference MOs also play this role, as
they help to discriminate between the two degenerate lone
pairs on oxygen in the reactant and between the three
degenerate orbitals of chloride in the product. However, in
this case as well as in the case of the LiFH162 two-
arrangement system, there is a complication with the
deformation of the DMOs obtained by the threefold way
along the reaction path. Applying the threefold way, a DMO
that is localized on a given atom in reactants can become
delocalized along the path and can transform into a DMO
localized on a different atom in products. For the acetate +
DCE reaction, reference MOs are essential for obtaining
diabatic states that are VB-like states, because they ef-
fectively project the delocalized MOs obtained by CASSCF
or MC-QDPT onto localized MOs centered on the atoms,
and they consequently generate VB-like configurations once
the wave function is re-expressed in terms of the fourfold
way DMOs. What is required is to obtain two crossing VB-
like diabatic states analogous to those in VB theory.

Note that the adiabatic energies obtained by the MC-QDPT
fourfold way are different from the energies obtained without
applying the fourfold way. The two different sets of energies
are denoted MC-QDPT(4) and MC-QDPT, respectively, or
when indicating that they are calculated at stationary points
or along reaction paths optimized with the M06-2X density
functional, they are denoted MC-QDPT(4)//M06-2X or MC-
QDPT//M06-2X. That the MC-QDPT and MC-QDPT(4)
energies are different can be understood considering the way
the MC-QDPT adiabatic energies are calculated. When the

fourfold way is not applied, the MC-QDPT wave function
is based on the CASSCF canonical MOs,180 whereas when
the fourfold way is applied, the MC-QDPT wave function
is based on the CASSCF DMOs for the active space and on
the canonical MOs for the inactive and virtual subspaces.
This causes the adiabatic energies to differ between these
two cases, because whereas the CASSCF adiabatic energies
are strictly invariant with respect to rotations of active
orbitals, this is not true for MC-QDPT.162 In the calculations
reported here, only the MC-QDPT(4)//M06-2X adiabatic
energies are computed along the reaction path, for consis-
tency with the diabatic energies obtained at the same level.

2.4. Diabatic States from the Molecular Orbital-Valence
Bond (MOVB) Method. The MOVB method60,141 is based
on a block-localized wave function (BLW) approach.153-160

The BLW method has been applied to a variety of problems
including interaction energy decomposition and conjugation
delocalization effects.205-208

For each given VB structure, the molecular system is
divided into a number of polyatomic fragments, for which
MOs are formed by using only basis functions on that
fragment; the number of electrons and total charges of each
fragment are fully determined by the VB structure. Therefore,
for the present SN2 reaction between acetate ion and
dichloroethane, the wave functions for the reactant (ΨMOVB

R )
and product (ΨMOVB

P ) states are given by
Reactant

[CH3CO2
-][Cl-CH2CH2Cl];ΨMOVB

R ) Â{�Ac-�Cl–CH2CH2Cl}

(4a)

Product

[CH3CO2 -H2CH2Cl][Cl-];ΨMOVB
P ) Â{�AcCH2CH2Cl�Cl–}

(4b)

where Â is an antisymmetrizing operator, and φF specifies a
product of molecular orbitals that are expressed as linear
combinations of atomic orbitals in fragment F. The Lewis
structures for different fragments in the reactant and product
diabatic states as well as their associated total charges are
defined by square brackets. The MOs within each fragment
in eqs 4a and 4b are restricted to be orthogonal as in HF
theory, but the MOs of different fragments are not
orthogonalsa key feature of conventional valence bond
theory, for which the fragments are atoms.

The wave function of each VB structure is defined by a
single Slater determinant (eqs 4a and 4b), and the MOs of
the MOVB treatment are fragment localized, that is, they
are delocalized within each fragment, but by construction
they are localized on one or another fragment. Each VB wave
function obtained by the BLW method represents a diabatic
electronic state. We have shown that the reactant state wave
function defined by eq 4a in MOVB corresponds to an ab
initio VB wave function containing covalent configuration
1 and ionic configurations 3 and 4 for the C-Cl bond that
is cleaved, and the nucleophile CH3CO2

- ion acts as a
“spectator” ion that interacts and polarizes the C-Cl bond
structure.4 In the same vein, the product state wave function
defined by eq 4b consists of contributions from covalent
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structure 2 and ionic structures 3 and 6.4 We note that the
outer spin-pairing structure 5 does not contribute to the Lewis
bond configuration interaction wave function of either the
reactant or the product state; thus, it is not included in the
MOVB wave function; however, comparison of the results
from ab initio VBSCF calculations, with and without
inclusion of structure 5, shows that it only affects the reaction
barrier by about 1 kcal/mol.4 The total MOVB wave function
is then written as a linear combination of the diabatic states
obtained with BLW

ΦMOVB ) aRΦMOVB
R + aPΦMOVB

P (4c)

where aR and aP are MOVB configuration coefficients for
the reactant and product states, respectively. The adiabatic
energies are obtained by solving the generalized eigenvalue
problem61 in the nonorthogonal MOVB basis of the two
diabatic states.

Two different variational schemes are employed to opti-
mize the VB wave functions.4 In the first scheme, the optimal
fragment localized MOs at each molecular geometry are
obtained so as to minimize the expectation value of the
Hamiltonian for each individual VB structure (ΨMOVB

R and
ΨMOVB

P ). In other words, the energy for each VB structure is
separately optimized. The resulting VB states are called
variational diabatic configurations (VDC). An alternative
procedure, called consistent diabatic configuration (CDC)
theory, is to simultaneously optimize both VB structures and
configurational coefficients, as in the multiconfiguration self-
consistent field (MCSCF) method, to minimize the ground-
state adiabatic energy. The resulting VB states are called
consistent diabatic configurations since they are consistently
obtained with respect to the variational energy of the
adiabatic ground state.

In either scheme we may work in the nonorthogonal or
orthogonal representation. In the former case the secular
equation is the generalized eigenvalue problem4

| H11
n -V H12

n - S12V

H12
n - S12V H22

n -V |) 0 (5)

where H11
n and H22

n are the energies of the nonorthogonal
VB states, H12

n is the nonorthogonal off-diagonal Hamiltonian
matrix element, S12 is the overlap integral, and the resonance
energy (defined as the stabilization energy at the diabatic
state crossing) is the difference between V and the lower of
H11

n and H22
n (Note that S21 ) S12, and H21

n ) H12
n .).

Alternatively, the nonorthogonal diabatic states may be
orthogonalized, in which case the off-diagonal Hamiltonian
matrix element is the resonance energy itself. Hence there
are four combinations, namely orthogonal and nonorthogonal
CDC and VDC states.

The MOVB method is more efficient than other self-con-
sistent field valence bond (VBSCF) methods58,66,150,151,209-213

for obtaining the adiabatic ground-state potential energy
surface of a reactive system, but the trade-off is lower
accuracy since each VB structure is approximated by a single
Slater determinant of block-localized MOs. There are at least
three ways that the accuracy of the MOVB method can be
improved. The first is to use multiconfigurational methods

such as generalized valence bond (GVB) theory209 to
construct the individual diabatic states; this could provide a
better treatment of electron correlation within each fragment.
In the limit of this approach in which orbitals are block-
localized on individual atoms, MOVB is equivalent to ab
initio VBSCF, which is comparable to the familiar CASSCF
method with an appropriate choice of active space.214-217

Secondly, computational accuracy can be improved by
forming an effective Hamiltonian, in which the off-diagonal
Hamiltonian matrix element (H12) is required to reproduce
high-level ab initio calculations or experimental data. Thirdly,
one can use Kohn-Sham or generalized Kohn-Sham density
functional theory instead of HF theory, but this requires
additional assumptions to approximate the diabatic coupling.
These approaches are not employed in the present examples.

2.5. Diabatic Couplings from MOVB Wave Functions.
The calculations described in section 2.4 originally yield H11,
H22, and H12 in a nonorthogonal representation.4,60,127 For
dynamics calculations it is often necessary to consider
orthogonal states. For example, the usual rate of electron
transfer rearrangement in the nonadiabatic limit is derived
by Fermi’s Golden rule;218,219 if one used nonorthogonal
initial and final states in a Golden Rule calculation, a constant
coupling operator would cause a finite rate of charge transfer.
If one treats the dynamics to infinite order, i.e., exactly, one
can obtain correct results with either orthogonal or nonor-
thogonal representations, if used consistently. However,
much of the literature of charge rearrangements is based on
the Golden Rule or other perturbation treatments, and
difficulties with formulating such treatments in terms of
nonorthogonal representations are well known.220,221

The preferred way to transform to orthogonal states is by
the symmetric orthogonalization method of Löwdin222

because, of all possible orthogonalizations, this yields states
with the most resemblance to the original nonorthogonal
ones. The resulting transformed 2 × 2 Hamiltonian matrix
in the symmetrically orthogonalized representation is61,142

Hs ) S-1⁄2THnS-1⁄2 (6)

where S11 and S22 are unity because the nonorthogonal states
are normalized, S12 () S21) is the overlap between the diabatic
states, T denotes a transpose, and Hn is the Hamiltonian in
the nonorthogonal representation.

It is useful to compare the eigenvalue problem for the
ground-state adiabatic potential energy surface V, in the two
representations. In the symmetrically orthogonal representa-
tion it is the standard eigenvalue problem

|H11
s -V H12

s

H12
s H22

s -V |) 0 (7)

whereas in the nonorthogonal representation it is given by
eq 5. Comparing eqs 5 and 7 shows that the off-diagonal
element of the Hamiltonian enters the theory in a different
way in the orthogonal and nonorthogonal representations. It
would be meaningless to specify H12

n without also specifying
S12 .

Interestingly, if one defines (as done above) the resonance
energy, B, as the stabilization energy at the diabatic state
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crossing, it is clear that in the orthogonal diabatic state
representation

B) |H12
s | (8)

On the other hand, in the nonorthogonal diabatic state
representation, solving eq 5 analytically shows that the
resonance energy is

B) |θ|
1- S12sign(θ)

(9a)

where

θ ≡ H12
n - S12H11

n (9b)

Equation 9a, combined with the definition of B, can also be
rearranged to

B) |H12
n - S12V| (10)

that is, the resonance energy is the absolute value of the
difference between the nonorthogonal off-diagonal Hamil-
tonian matrix element and the adiabatic ground-state energy
scaled by the overlap integral. If one treats B as a parameter
in an effective two-state VB Hamiltonian approach, B is
implicitly dependent on the overlap.4,126 (Notice that if one
changes the sign of both diabatic wave functions, none of
the matrix elements changes sign; whereas if one changes
the sign of only one diabatic wave function, then H12

n and
S12 change sign, but B computed by eq 9a or 10 is invariant
to such a sign change.)

2.6. Diabatic Energies from the Empirical Valence
Bond (EVB) Method. The EVB method92-103 of Warshel
and Weiss has as its main features223 (a) using molecular
mechanics to model chemical reactions in the context of VB
theory; (b) assuming orthogonality of diabatic states to
eliminate unknown overlap integrals; (c) calibrating the
energy of the molecular fragments to try to make the method
suitable for the study of reactions in solution and large
molecules such as enzymes; (d) including solvation effects
in the diagonal Hamiltonian matrix elements; and (e)
assuming the off-diagonal Hamiltonian matrix elements are
independent of environment, for example, the same in
solution as in an enzyme. Note that (b) and (c) are mutually
incompatible because if the diabatic states are assumed
orthogonal or transformed to be so, they contain orthorgo-
nalization tails from other fragments. If molecular fragments
are used to calibrate such orthogonal diabatic states, this
treatment of overlap contributes an additional source of error
over and above the assumption that the fragments are not
internally polarized (distorted by valence interactions and
noncovalent effects) when incorporated into the whole
system. (Similar errors due to distortion and neglect of
overlap have been discussed carefully in the context of
diatomics-in-molecules theory,224 which is another semiem-
pirical valence bond method.) If real molecular fragments
are used to model the potential energy surfaces of the
orthogonalized diabatic states, the neglect of the overlap can
be a severe error if electronic structure methods are used as
we see below. Furthermore, due to the neglect of internal
polarization, if the diabatic coupling is only fitted to
reproduce the barrier height of the adiabatic ground state,

severe errors may arise in other regions of the potential
energy surface.130,131 In step (d), the off-diagonal matrix
elements are determined empirically by comparison with
experimental kinetics data and are assumed to have generally
simple functional forms or are taken as constant. In step (e),
they are assumed to be unaffected by the surroundings. These
features of the nondiagonal matrix elements are drawbacks
of EVB theory.

In this work we characterize the ground-state adiabatic
potential energy surface derived from EVB for the acetate
+ DCE reaction, taking the molecular mechanics parameters
for the diabatic states to be the same as those used in ref 21
(see the Appendix).

2.7. Free Energies of Solvation and Activation in
Water. The standard-state free energy of activation in water
at a temperature T in the separable equilibrium solvation
(SES) approximation can be calculated from the geometries
of the gas-phase reactants and the TS as follows225

∆Gw
0,+(T))∆Vg

++∆GRVE
+ (T)+∆∆GS

0,+(T) (11)

where T is the temperature; ∆Vg
+ is the potential energy

barrier in the gas phase; ∆GRVE
+ is the difference between

the internal gas-phase free energies of the TS and reactants,
with RVE standing for rotational, vibrational, and electronic
degrees of freedom; and ∆∆GS

0,+ is the difference in standard-
state free energies of solvation of the TS and reactants. (Note
that we include zero point vibrational energies in the ∆GRVE

+

term, whereas some workers include it in ∆Vg
+.) We neglect

the 4GRVE
+ term in the calculations, as this term is not our

focus here and does not affect our discussion. All the
calculations presented here are for a temperature of 298.15
K.

We calculate ∆∆GS
0,+ (T) by using the SM8 universal

continuum solvation model226 in combination with
CM4M,227 which is the parametrization of Charge Model
4228 (CM4) that is specifically designed to be used with the
M06 suite (M) of density functionals. The M06-2X functional
with the 6-31G(d) basis set has been chosen for the
calculations. The SM8/M06-2X/CM4M model has been
shown to reproduce free energies of solvation for a set of
120 ions in water with a mean unsigned error of 3.4 kcal/
mol.226

2.8. Basis Sets. All B3LYP, HF, MC-QDPT, and M06-
2X/SM8 calculations in this article use the 6-31+G(d,p),
6-31+G(d,p), 6-31&G(d), and 6-31G(d) basis sets, respec-
tively. The 6-31&G(d) basis is defined in the Appendix for
gas-phase M06-2X calculations, MG3S is used for stationary
points, and 6-31G(d) has been used for the construction of
contour plots.

3. Results

We first define the reaction coordinate used for the plots,
and we explain how the reaction path and energies along
the reaction path were obtained for each of the methods
employed. Then, relative adiabatic ground-state potential
energy values at stationary points are presented to evaluate
the quality of results at different levels of theory. The free
energies of solvation and activation in water are calculated
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and compared with the dynamical results based on the EVB
potential surface reported in the literature. Then, we describe
the diabatic states. Finally, we discuss the diabatic state
coupling along the reaction path.

3.1. Reaction Coordinate and Reaction Path. The
reaction coordinate for reaction 1 is defined as the difference
between the bond distances of the breaking bond (C-Cl)
and the forming bond (O-C)

z)R(C-Cl)-R(O-C) (12)

As mentioned in section 1, such a reaction coordinate is
sometimes called a distinguished reaction coordinate. The
reaction paths were constructed by fixing the value of this
distinguished reaction coordinate and optimizing the rest of
geometrical variables on the ground-state adiabatic PES. The
values of some of the key geometric parameters for the
stationary points obtained using the HF, B3LYP, M06-2X,
and the EVB computational methods are presented in Table
1. The definition of these variables is illustrated in Figure 2.
Tables containing the Cartesian coordinates of all the points
calculated along the reaction paths with these four methods
are presented in Tables S2-S5 of the Supporting Informa-
tion. Overall, the optimized M06-2X geometrical parameters
are in good agreement with those obtained at the HF and
B3LYP levels. The average of the root-mean-square devia-
tions in the O-C and C-Cl bond distances for the HF and
B3LYP results at the reactant ion-molecule complex and the
transition state, as compared with the more reliable M06-
2X results, are 0.12 and 0.08 Å, respectively.

The first point along the reaction path is the reactant ion-
molecule complex with the DCE molecule in a gauche
conformation, because this conformation is preferred for the
nucleophilic attack of the acetate ion. The O-C distance at
this geometry calculated at the M06-2X level is 3.09 Å,
which is slightly shorter than the O-C distance optimized
at the other two levels. The O-C distance at the optimized

M06-2X transition state is 2.01 Å, which is also shorter than
that optimized at the HF and B3LYP levels. The product
ion-molecule complex has R(O-C) ) 1.44 Å. The C-Cl
distances obtained at the M06-2X level are also shorter than
those obtained at the HF and B3LYP levels at the three
stationary points.

As can be observed in Table 1, the bond distances and
angles obtained with EVB are quite different from those
obtained with the other methods. As also shown in Table 1,
two different transition states (each confirmed by frequency
analysis to have only a single imaginary frequency) are found
on the ground-state adiabatic potential energy surface instead
of the single transition state obtained with HF and with
density functional methods. The data presented in Table 1
also show that the EVB stationary point geometries are
shifted towards the region of products, as shown most clearly
by the O-C and C-Cl bond distances: the EVB reactant
complex has distances comparable to those of the TS
obtained with the other methods, and the EVB transition
states have distances roughly comparable to that of the HF
and density functional product complex. The shape of the
EVB ground potential surface is therefore quite different to
that of the potential surfaces obtained with electronic
structure methods. This will be more clearly seen in the next
section, where we compare contour plots obtained with
density functionals to those obtained with EVB.

3.2. Adiabatic Ground-State Energy. Shown in Figure
3(a) are the ground-state adiabatic potential energies as
functions of the reaction coordinate obtained at the B3LYP,
M06-2X, CDC-MOVB, and fourfold way (MC-QDPT(4)//
M06-2X) levels of theory. In Figure 3(b) we present
analogous results obtained with EVB theory; these are given
separately because they span a larger range of the reaction
coordinate.

The energies of the stationary points along the gas-phase
reaction path are sketched in Figure 4, where ∆Vg represents
a difference in gas-phase potential energy. The two key
electronic energy differences are defined in this scheme,
namely, the reaction energy from the reactant complex to
the product complex (∆Vg), and the reaction barrier with
respect to the reactant complex (∆Vg

+). Table 2 summarizes
the values obtained in the present work for these quantities.
To our knowledge, the product complex has not been
reported in the literature, and there are no data to which to
compare.

The barrier heights and reaction energies obtained with
the three high-level wave function methods used as a
reference (presented in Table 2) agree reasonably well with

Table 1. Value of Key Bond Distances (in Å) and Angles (in degrees) Obtained for the Stationary Points of the Acetate +
DCE Reaction with the HF, B3LYP, M06-2X, and EVB Methodsa

HF B3LYP M06-2X EVB

RS TS PS RS TS PS RS TS PS RS TS1 TS2 PS

C-O(d1) 3.19 2.12 1.44 3.12 2.09 1.46 3.09 2.01 1.44 2.37 1.86 1.95 1.70
Cl-C(d2) 1.82 2.36 3.49 1.84 2.35 3.44 1.81 2.28 3.23 2.40 2.90 3.34 4.89
O-C-Cl (a1) 126 164 166 126 164 169 129 166 165 170 124 169 98
O-C-C (a2) 86 91 113 91 96 114 72 95 113 95 107 100 118

a The geometric parameters are defined in Figure 2. ‘RS’, ‘TS’, and ‘PS’ stand for the reactant ion-molecule complex, the transition state,
and the product ion-molecule complex, respectively.

Figure 2. Geometric variables for the acetate + DCE reaction
showing the formation of the O-C bond and the breaking of
the C-Cl bond.
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each other. The presumably most accurate method, G3SX//
M06-2X, gives a barrier height of 16.9 kcal/mol. The MC-
QDPT(4)//M06-2X barrier height is in good agreement with
this high-level value, whereas density functional theory at
the B3LYP level gives too low a barrier and the M06-2X
barrier is slightly too large (Table 2 and Figure 3). The
energy of reaction predicted by the high-level methods is
between about -10.0 and -11.0 kcal/mol, in good agreement

with the density functional and MC-QDPT(4)//M06-2X
results. The EVB reaction energy of -7.0 kcal/mol is in
reasonable agreement with the high-level results. The higher
of the two barriers obtained by EVB (22.9 kcal/mol) is about
6 kcal/mol higher than our best estimate, and, as mentioned
before, the geometry of the saddle point disagrees with all
four other calculations. Of particular relevance is the presence
of the second EVB saddle point with a barrier of only 2.3
kcal/mol. Following the path of steepest descent from either
transition state leads in one direction to the reactant complex
and in the other to the product complex. (Thus, the path of
steepest descent from the higher saddle point does not lead
to the lower one.) This implies that there is an alternative,
lower-energy path for the reaction to proceed, avoiding the
higher barrier. This is most likely an artifact of the fitting of
the EVB method to empirical data for its use to study the
reaction in water and in the haloalkane dehalogenase enzyme.
The relevance of such a low barrier for dynamical studies
of the reaction in water and in the haloalkane dehalogenase
enzyme will be considered below.

To further examine the shape of the ground-state adiabatic
PES, we have constructed 2-D contour plots for the reaction
at the B3LYP and M06-2X levels and have compared them
to those calculated at the EVB level. To make these plots, a
grid of points was defined spanning a range of values of the
O-C and C-Cl distances. The ground-state adiabatic
energies that are plotted were obtained by fixing the values
of these two distances and optimizing the rest of geometric
parameters. The contour plots obtained using B3LYP are
presented in Figure 5(a), those obtained using M06-2X are
shown in Figure 5(b), and the ones obtained from EVB
are presented in Figure 5(c). In Figure 5(a),(b), the reactant
ion-molecule complex is located in the lower right-hand
corner, with an energy which is zero by definition. The
system then evolves towards the transition state, which is
located at an energy of 14.9 kcal/mol for B3LYP (Table 2)
and at an energy of 16.5 kcal/mol for M06-2X, and it reaches
the product ion-molecule complex in the upper left-hand
corner of the figures. The EVB contour plot presented in
Figure 5(c) is substantially different; the most notable features
are the shift of the reactant complex toward the region of
the B3LYP TS and the “shelf” located between the contours
of 1.0 and 4.0 kcal/mol containing the lower transition state.
Note that the TS with the higher barrier is not reflected in

Figure 3. Ground-state adiabatic potential energy profiles
along the reaction coordinate computed with (a) MC-QDPT(4)//
M06-2X (full line), M06-2X (dashed line), CDC-MOVB (dotted
line), and B3LYP (dashed-dotted line) and (b) EVB. For each
method, the zero of energy is taken as the ground-state
adiabatic energy of the ion-molecule reactant complex. Note
the change in the scale of the abscissa between parts (a) and
(b).

Figure 4. Definition of reaction energy and reaction barrier
on the ground-state PES used in the present study.

Table 2. Reaction Energy and Barrier Height (in kcal/mol)
of the Acetate + DCE Reaction in the Gas Phase

method ∆Vg ∆Vg
+

M06-2X -11.3 18.9
BMC-CCSD//M06-2X -9.9 18.0
G3SX(MP3)//M06-2X -10.5 17.2
G3SX//M06-2X -10.7 16.9
MC-QDPT//M06-2X -15.1 13.2
MC-QDPT(4)//M06-2X -10.6 16.7
B3LYP -10.3 14.9
HF -18.4 18.3
MOVB (scheme VDC) -21.7 23.8
MOVB (scheme CDC) -22.0 19.2
EVB -7 22.9,2.3a

a The first value corresponds to TS1, and the second value
corresponds to TS2 (see Table 1 for the geometries of TS1 and
TS2).
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the plot, as the optimizations fixing the values of the O-C
and C-Cl distances close to those of the TS with the higher
barrier always lead to the lower energies observed in the
figure. We conclude that the features of the EVB ground-
state PES for acetate + DCE reaction in the gas phase do
not reflect those obtained with high-level electronic structure
theory.

3.3. Diabatic States. The diabatic potential energy curves
(and the ground-state adiabatic potential curves) obtained
using the nonorthogonal and orthogonal representations for

MOVB with VDC and CDC methods are presented in Figure
6; the diabatic curves and the ground- and first-excited
adiabats obtained with the fourfold way are shown in Figure
7; and the analogous curves obtained with the EVB method
are presented in Figure 8. In comparing these curves, one
should keep in mind that the fourfold way diabatic states
span the same space as the ground and selected excited
adiabatic states, whereas the MOVB states involve no
reference or excited adiabatic states, and the EVB curves
involve no electronic structure information at all. The
corresponding diabatic couplings for the MOVB method in
the nonorthogonal and orthogonal representations and for the
fourfold way (MC-QDPT(4)//M06-2X) and EVB calculations
are depicted in Figure 9.

We emphasize that there is no unique way of defining the
diabatic states corresponding to the reactant state and the
product state, in part because diabatic states are intrinsically
nonunique4,59,105,136-141 and in part because it is necessary
to apportion the contributions from additional VB structures
(such as, in the present example, the key ionic configuration

Figure 5. Contour plots of the ground-state adiabatic potential
surface in the plane of the O-C and C-Cl distances. The
levels of calculation used to construct the plots are (a) B3LYP,
(b) M06-2X, and (c) EVB. “RS”, “TS”, and “PS” stand for the
reactant ion-molecule complex, the transition state, and the
product ion-molecule complex, respectively. Note the different
ordinate between parts (a) and (b). The energy units used
are kcal/mol.

Figure 6. Comparison of adiabatic and diabatic potential
profiles. (a) Adiabatic HF profile (black line) and adiabatic and
diabatic MOVB potential energy profiles obtained by nonor-
thogonal VDC (red lines) and nonorthogonal CDC (blue lines)
schemes. The panel in the center is a blowup of the central
region of the larger panel. (b) Same as part (a) except MOVB
results are in the orthogonal representation. In both (a) and
(b) the zero of energy is chosen as the ground-state HF
adiabatic energy of the ion-molecule reactant complex.
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3 as well as the high-energy covalent configuration 6 in eq
2) into two explicit states along the entire reaction coordinate.

The MOVB reactant and product diabatic energy profiles
in VDC and CDC models and in the nonorthogonal and
orthogonal representations are presented in Figure 6. Figure
6(a) shows that in the nonorthogonal representation, the
diabatic energy increases by about 70 and 290 kcal/mol for
VDC and CDC states, respectively, in going from the
equilibrium reactant ion-dipole geometry to the equilibrium
product state geometry. Similarly, for the reverse reaction,
the product state energy increases by 115 and 360 kcal/mol
for VDC and CDC schemes, respectively, at the reactant
geometry. Thus, optimizing each of the MOVB structures
separately affords much smaller energies at geometries far
from their respective regions of minimal energy than does
optimizing the ground-state energy. The fourfold way values
for these quantities are approximately 140 kcal/mol both for
the reactant and product diabatic states (Figure 7). The
orthogonal representation for MOVB yields results very
different to those from the nonorthogonal representation, as
can be seen in Figure 6(b). The energies of the orthogonal
MOVB states are significantly higher than for the nonor-

thogonal representation, and the curves do not join the
adiabatic ground-state curve in the reactant and product
regions. Thus, the energy variations in the fourfold way
reactant and product diabatic states are larger than the MOVB
results in the VDC method but smaller than those in the CDC
optimization (either nonorthogonal or orthogonal). The
maximum energy changes in the reactant and product states
of EVB theory are about 140 and 100 kcal/mol, respectively.

Orthogonalization of the MOVB states involves the
overlap between the MOVB structures. The overlaps for the

Figure 7. Fourfold way (MC-QDTP(4)//M06-2X) adiabatic and
diabatic energies along the reaction coordinate. The zero of
energy is chosen as the ground-state adiabatic energy of the
ion-molecule reactant complex.

Figure 8. EVB adiabatic and diabatic energies along the
reaction coordinate. The zero of energy is chosen as the
ground-state adiabatic energy of the ion-molecule reactant
complex.

Figure 9. Diabatic coupling matrix elements as a function of
the reaction coordinate. (a) Nonorthogonalized MOVB reso-
nance energy of eq 9a or the equivalent eq 10 (full line for
the CDC method, and dashed line for the VDC method), (b)
orthogonalized MOVB H12

s (CDC is given as a full line, and
VDC is shown by a dashed line), and (c) diabatic coupling
according to the orthogonal fourfold way (MC-QDTP(4)//M06-
2X) (curve with a peak) and EVB (straight line).
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reactant complex, the transition state, and the product
complex are presented in Table 3, and overlaps at other
locations along the reaction path are presented in Table S6
of the Supporting Information. As observed in Table 3, the
overlaps are always quite large, especially in VDC states
where they go up to 0.94 in the product region. The overlap
integrals from the CDC wave functions are significantly
smaller than the VDC values (Table 3). Apparently, optimiz-
ing the MOVB structures separately causes the fragment
orbitals to delocalize more than optimizing the ground-state
energy (CDC theory), thereby causing a stronger overlap
between the structures. This may also be recognized as
increased ionic character in the VDC reactant diabatic state
at the product state geometry, which has greater resemblance
with the product diabatic state near its minimum.4 Also,
the overlaps in VDC states increase continuously along the
reaction path, whereas the CDC overlaps are maximal in the
transition state region. The values obtained for the overlaps
can be compared, for instance, with those obtained in a
breathing-orbital VB study of the X- + CH3X (X ) F, Cl,
Br, I) identity reactions,64 where for the TS geometry, smaller
values oscillating between 0.47 for F and 0.33 for I were
obtained for the VB wave function overlap. In yet another
study, ab initio VBSCF/6-31+G(d,p) calculations on the
ammonia exchange reaction of NH3 and CH3NH3

+ show
overlap integrals varying from 0.6 to 0.7 from the ion-dipole
complex minimum to the transition state.4 Thus, a more
conventional VB approach yields smaller, but still significant,
overlaps than MOVB, because the VB orbitals are more
constrained in the former case and are not allowed to
delocalize as extensively as in the MOVB method. Overlap
is simply not negligible in VB theory.

The energy difference between the product and reactant
diabatic states at the reactant geometry is called the
reorganization energy in condensed-phase reactions, and it
plays a key role in Marcus theory. In other contexts, this
energy difference is called promotion energy, for example
by Shaik.56 Figures 6-8 show that the reorganization energy
varies from 115 to 440 kcal/mol for the four MOVB schemes
and is 140 kcal/mol in both the fourfold way and the EVB
model. The close agreement of the reorganization energy
from the nonorthogonal VDC-MOVB scheme with that of
the fourfold-way is not straightforward to interpret because
the orthogonal fourfold way and EVB schemes should strictly
be compared only to the orthogonal MOVB results.

Note that the fourfold way states are obtained by following
a strategy in which both the ground and the first excited state
surfaces are used in the definition of the two diabatic states,
whereas in the MOVB schemes no excited adiabatic state
plays any role. Nevertheless, both the fourfold way and the

MOVB method share the characteristic that the definition
of the diabatic states is based on electronic structure
considerations. In contrast the EVB diabatic states are based
on the value of molecular mechanics analytical energy
expressions used in regions far away from equilibrium
conformationswhere they are not valid and were not
designed to be used. The EVB diabatic energy profiles shown
in Figure 8 do not agree qualitatively with either the MOVB
or the fourfold-way ones in that the region of the transition
state does not correspond to the crossing of the diabatic
curves although it is typically described in this way. In the
present SN2 reaction (chosen to model the haloalkane
dehalogenase reaction), the transition state is located at a
larger value of the reaction coordinate (about 1.3 Å). As
already mentioned, the EVB barrier on the ground-state
adiabatic PES is much lower than that obtained with the other
methods.

The diabatic couplings obtained by all six schemes are
shown in Figure 9. First one notes that some features of the
diabatic couplings obtained by the MOVB method, the
fourfold way, and the EVB calculations are qualitatively
different. Focusing first on the nonorthogonal MOVB method
(Figure 9(a)), the diabatic coupling obtained with the CDC
scheme, in which it represents the stabilization energy of
the transition state at the diabatic energy crossing and is
dependent on the overlap integral according to eqs 9a and
10, has a rather different shape from that obtained with the
VDC model. The CDC resonance energy remains relatively
constant along the reaction path, as in EVB theory, and is
nonzero at the reactant and product regions. Interestingly,
the quantitative result of about 30 kcal/mol is also close
to the EVB constant value of ∼45 kcal/mol (Figure 9(c)).
On the other hand, the VDC resonance energy curve in
Figure 9(a) has very similar shape but smaller diabatic
coupling, in comparison with the fourfold way method. This
reflects the more ionic character in the VDC states in which
the stabilization energy due to diabatic coupling is partially
included in the diabatic energies, and this is mirrored by
greater overlap integrals than those between the CDC states.
However, when the nonorthogonal CDC and VDC diabatic
states are orthogonalized by Löwdin transformation, the H12

s

couplings, shown in Figure 9(b), have a much larger
magnitude than those of B in nonorthogonal representation
shown in Figure 9(a), and the former couplings present a
minimum around the transition state geometry. The different
behavior of H12

s as compared with B is probably a conse-
quence of the large overlap between the nonorthogonal
MOVB structures, which should cause the nonorthogonal
and orthogonal wave functions to differ considerably.
Interestingly, while the symmetric transformation enforces
orthogonality between diabatic states, the “penalty” of
distorting the wave functions is transferred to enhanced
diabatic coupling to yield the same ground-state energy. In
the fourfold way (Figure 9(c)), the diabatic states are
orthogonal by construction andsalso by constructionsare
zero at reactants and products, and the diabatic state coupling
is most dominant in the strong interaction region where the
two VB states become degenerate and have the greatest
overlap. This is qualitatively in agreement with the nonor-

Table 3. Computed Overlap Integrals Using the MOVB
Wave Functions at the Reactant Complex (RS), Transition
State (TS), and Product Complex (PS) Geometries
Optimized at the HF Level

z VDC-MOVB CDC-MOVB

RS 0.853 0.605
TS 0.910 0.770
PS 0.938 0.659
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thogonal VDC-MOVB method. The maximum values of the
fourfold-way and EVB H12 curves are much smaller than
the magnitude of the MOVB couplings in the orthogonal
representation but larger than those in the nonortho-
gonal representation. The fourfold way coupling decays
rather rapidly but not at the same rate in the directions
towards the reactant state and the product state. This uneven
rate of decrease in the diabatic coupling strength is usually
not considered in EVB, where either a single exponential
function or a constant diabatic coupling are assumed.

3.4. SM8 Free Energies of Solvation and Free
Energies of Activation. We have applied the SM8 solvation
model to the reactant ion-molecule complex and the TS, and
we have calculated free energies of activation by adding the
gas-phase reaction barrier to the difference of the free
energies of solvation. The results are presented in Table 4.
The second row gives the results of molecular dynamics
simulations of the free energy of activation in water from
ref 21 and the corresponding free energies of solvation from
ref 28. Comparing the values of these quantities shows that
the gas-phase free energy of activation (that is, the sum of
the first two terms on the right-hand side of eq 11) is only
2 kcal/mol. This value is substantially smaller than expected
from the electronic structure calculations presented in this
work, which indicate that the value of the electronic gas-
phase barrier is about 17 kcal/mol. However, the result would
be consistent with the lower electronic barrier of 2.3 kcal/
mol found for EVB (see Figure 5(c)), which was pointed
out in refs 1 and 27, and with the general shape of the EVB
ground-state PES. Note that the final result, namely, the free
energy of activation, is in good agreement with experiment.

The results presented in the first row of Table 4 have been
obtained by optimizing the geometries of the reactant ion-
molecule complex and of the TS in the presence of the
solvent by SM8. The gas-phase geometries of reactants and
of the TS taken as the reference for the calculation of free
energies of solvation are those obtained by M06-2X. The
value of the electronic gas-phase potential energy barrier has
been assumed to be that of the best level of calculation used
in the present study, namely, G3SX//M06-2X. Regarding the
free energies of solvation, as shown in the table, it is

interesting that the values obtained for reactants and for the
TS are rather similar, in contrast to other SN2 reactions (for
example, the prototype Cl- + CH3Cl reaction66,229) where
reactants are preferentially solvated by a large amount over
the TS. This is probably due to the delocalized nature of the
charge in the acetate anion. The overall free energy of
activation is 21.6 kcal/mol, smaller than the experimental
value of 28.2 kcal/mol.24,27,230 at 373 K. Note that solute-
solvent charge transfer is not taken into account by the
present treatment. For the acetate anion in a microsolvated
environment, a charge transfer to water of +0.18 was
obtained with the SM8 model also employed here.231

Consideration of this and other factors affecting the solvation
free energies could lead to a better agreement with experiment.

The results shown in the third and fourth row of Table 4
employ the EVB PES. In this case, pointwise calculations
of free energies of solvation have been performed at the SM8
level at EVB geometries. In the third row, which has been
obtained from EVB reactant and TS geometries, one observes
that the energy of activation obtained is negative, in strong
disagreement with the value obtained from molecular
dynamics simulations.21,28 It is noteworthy that the solvation
energy for the TS is considerably larger than that for
reactants, which is the opposite of that found from the
simulations28 and contrary to what is expected for SN2
reactions. This is caused by the already mentioned shift of
the EVB reactant and TS geometries with respect to those
obtained by electronic structure calculations (see Table 1):
the TS has an extended C-Cl distance and the Cl- anion
has a large free energy of solvation. The large discrepancy
obtained for the free energy of activation is due at least in
part to the fact that the geometries chosen are not quite
representative of the geometries actually sampled in the
liquid-phase molecular dynamics simulations, such as those
shown in Figure 1(a) of ref 21. To address this point,
we have chosen two geometries, one with an O-C distance
of 3.2 Å and a Cl-C-O angle of 150.0° as representative
of the reactants region, and another one with an O-C
distance of 2.2 Å and a Cl-C-O angle of 165.0° as
representative of the TS region. These two parameters were
fixed while the rest of the geometrical parameters were
optimized, and pointwise SM8 calculations were again
performed on the optimal structures. The results, presented
in the fourth row of Table 4, show a free energy of activation
close to zero and a larger solvation energy for the reactant
state, as expected for the acetate + DCE SN2 reaction. Note
also the negative reaction barrier in the gas phase using these
structures (Table 4). Olsson at al. argued in footnote 68 of
ref 28 that TS structures are similar in the gas phase and in
aqueous solution, but the structures of the reactant states are
different, the elongated ion-dipole structure in water is 13
kcal/mol higher, and the compressed ion-dipole complex in
the enzyme is 6 kcal/mol higher in energy than that at the
gas-phase minimum.28 According to this analysis28 a negative
reaction barrier of about -11 kcal/mol would be obtained
in water, in close agreement with the value in the fourth
row of Table 4. It is possible that an average over many
molecular configurations such as that shown in Figure 1(a)
of ref 21 could reconcile this result with the gas-phase

Table 4. Free Energies of Solvation and Activation in
Water (in kcal/mol) and Energies of Activation in the Gas
Phase, for the Acetate + DCE Reaction Obtained from
EVB and from M06-2X Geometriesa

method ∆Xg
+ ∆GS

RS ∆GS
TS ∆Gw

+

optimized geometries at SM8 16.9b -58.1 -53.4 21.6
molecular dynamics on EVB

PES21,28
2.0c -77.8d -54.9d 24.9e

SM8 on stationary point EVB
geometries

2.3f -58.0 -73.7 -13.4

SM8 on sampled EVB
geometriesg

-6.2f -64.8 -58.3 0.3

a “RS” and “TS” stand for the reactant ion-molecule complex
and the transition state, respectively. The experimental free energy
of activation in water is 28.2 kcal/mol.24,27,230 b ∆Vg

+ calculated at
the G3SX//M06-2X level. c ∆Gg

+ derived from columns 3, 4, and 5
and eq 11. d Taken from ref 28. e Taken from ref 21. f ∆Vg

+

calculated from the ground-state EVB PES. g Representative
geometries of the molecular dynamics trajectory sampling
presented in Figure 1(a) of ref 21.
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activation barrier of 2.0 kcal/mol obtained in the first row
of the table. However, Olsson et al.28 stated that a gas-phase
activation barrier deduced from their “thermodynamic cycle
is in excellent agreement with ab initio estimates of this
barrier (about 17 kcal/mol)”. The free energy of activation
obtained is actually in disagreement with that from molecular
dynamics simulations by more than 20 kcal/mol.

Therefore, none of the calculations presented using the
EVB PES has been able to reasonably reproduce the results
presented in refs 21 and 28. We believe that it is mainly the
qualitatively wrong shape of the EVB PES in the gas phase
which causes the inconsistencies in the computation of free
energies of solvation and activation in water. In our opinion,
a careful study of the EVB gas-phase reactions should be
undertaken prior to reparametrizing the PES for use in studies
in condensed phase or in the active center of an enzyme.

3.5. Other Methods. It is interesting to compare the
present treatments to Voter and Goddard’s generalized
resonating valence bond (GRVB) method.232 As compared
to MOVB, we note that GRVB uses a multiconfiguration
wave function, whereas the MOVB method uses a single
Slater determinant. As compared to the fourfold way, we
note that GRVB is an approximate way to calculate the
ground electronic state, whereas the fourfold way starts with
arbitrarily accurate calculations that approximate the ground
and excited states and then finds diabatic states that span
the same space as the two lowest-energy adiabats.

To construct an accurate and efficient VB-based model
for modeling chemical and enzymatic reactions, an effective
Hamiltonian MOVB (EH-MOVB) approach has been de-
veloped;233 this method can be parameterized similarly as
the EVB model, but the molecular structures can be
optimized to obtain good agreement with ab initio MO or
VBSCF results. The EH-MOVB method can be carried out
at either the semiempirical or ab initio level of theory, using
either Hartree-Fock or density functional theory. Accuracy
is improved by introducing a scaling factor on the diabatic
coupling (H12

EH-MOVB ) �H12
MOVB) to yield the correct barrier

height and a diabatic energy shift constant (H22
EH-MOVB )

H22
MOVB + ∆ε) to reproduce the experimental energy of

reaction. The EH-MOVB theory is based on ab initio valence
bond theory with a multiconfiguration reduction to generate
the diabatic states.4 The level of theory to describe
the diabatic states can be systematically improved, and the
diabatic coupling is dependent on all 3N degrees of freedom
where N is the number of atoms in the system. The method
has been illustrated for the SN2 reaction between hydrosulfide
and chloromethane at the EH-MOVB/6-31+G(d,p) level, and
excellent agreement has been obtained with ab initio VBSCF
or other high-level results for optimized structures and the
potential energy surface.233

4. Concluding Remarks

We hope that the perspective presented here is useful for
elucidating the importance of consistently defining diabatic
states when using them to discuss condensed-phase properties
such as reaction rates of enzymatic reactions. The construc-
tion of diabatic states for the gas-phase reaction is often a
useful first step for applications where liquid-phase diabatic

states are desired for interpretative purposes, but there is no
unique method for defining diabatic states in either phase.
The main focus of the present study is a comparison between
three methods, namely, the molecular orbital valence bond
(MOVB) method, the fourfold way, and empirical valence
bond (EVB) calculations, of generating diabatic, VB-like
states, as illustrated by application to the acetate + DCE
system in the gas phase. For the MOVB case, we consider
two schemes, called variational diabatic configurations
(VDC) and consistent diabatic configurations (CDC). Fur-
thermore, whereas the fourfold way and EVB are defined
only in an orthogonal representation, MOVB is directly
defined in a nonorthogonal representation, which can be
transformed to an orthogonal representation by Löwdin
symmetric orthogonalization method.

There are many different motivations for working with
diabatic states, and in the case of the EVB calculations
presented here the goal of the original workers was to predict
the free energy profile in an enzyme reaction for use with a
collective reaction coordinate based on an energy gap. It is
recognized by all practitioners that all the approaches used
here are approximate ones, and when one applies these same
methods to other problems, the quality of the results will
depend on the quality of the parameterization, the basis set,
and various problem-specific details. For parameterized
methods, one must keep in mind the nature of the param-
eterization. If one calibrates an analytic potential energy
surface, especially one with an analytic form restricted for
computational efficiency, to produce one or two properties
one cannot necessarily expect the potential energy surface
to be accurate along any coordinate chosen. Thus, one might
argue that an EVB surface should be used only for calculating
the potential energy surface along the same collective energy-
gap coordinate for which it was designed and created. That
is one possible way to proceed, but our goal here was to
examine the underlying diabatic potential surfaces because
they are often interpreted in a physical way as providing
information about reorganization energy, promotion energy,
and enzyme mechanisms and for understanding the origin
of rate acceleration in enzyme catalysis. Thus, in the present
paper, we are examining the EVB diabatic curves in a
different context using a geometrical reaction coordinate
different than that (an energy-gap coordinate) for which they
were originally parameterized along. Our justification for this
is that we believe thatsfor many purposessdynamical
methods based on a collective reaction coordinate and
dynamical methods based on a valence-coordinate reaction
path should both utilize an atomically qualitatively correct
description of the potential energy surface as a function of
all relevant atomic coordinates, and our goal was to
comparesin this contextsthree classes of methods employ-
ing the concept of diabatic states in various ways. By
calculating not only the transition state theory rate constant
but also the transmission coefficient, one can unify treatments
based on different choices of the reaction coordinate.1,2,105

It has been shown that the transmission coefficients are close
to unity for the present SN2 reaction in water and in
haloalkane dehalogenase enzyme when making use of the

Perspective J. Chem. Theory Comput., Vol. 5, No. 1, 2009 15



asymmetric stretch reaction coordinate,27 so this choice of
reaction coordinate is a very relevant one.

The diabatic potential energy profiles along the asymmetric
stretch reaction coordinate obtained with the fourfold way
agree qualitatively but not quantitatively with the nonor-
thogonal MOVB method with the VDC model; this is very
interesting since the underlying electronic structure methods
employed in this work for MOVB (ab initio HF) and the
fourfold way (ab initio MC-QDPT) are very different and
since the fourfold way yields an orthogonal representation.
The results obtained with EVB, which is based on a
parameterization of MM diabatic states to reproduce free
energies in condensed phase, are quite different from those
obtained with MOVB and the fourfold way, which are based
on electronic structure calculations, but are closer in general
magnitude to the fourfold-way results. However, the EVB
gas-phase adiabatic reaction path shows a systematic shift
towards product geometries with, e. g., the EVB ion-molecule
reactant minimum resembling the TS geometry obtained with
electronic structure methods. Also EVB has two different
reaction paths, one bearing a barrier of 22.9 kcal/mol, in
qualitative agreement to the barrier obtained by MOVB and
the fourfold way, and a second reaction path of much lower
energy, with a barrier of only 2.3 kcal/mol. This second
reaction path is an artifact of the EVB parameterization. A
calculation of free energies of solvation and activation in
water based on the EVB PES has been unable to reproduce
the free energy of activation obtained by molecular dynamics
simulations (24.9 kcal/mol). These findings cast doubts on
the reported EVB results and suggest that a careful param-
eterization of the gas-phase reaction might have been useful
in order to obtain more meaningful results for the condensed-
phase reaction by the EVB method.

The energy variations predicted by the two electronic
structure methods (MOVB and the fourfold way) for the
reactant and product states at the product and reactant
equilibrium geometries, respectively, are large. The MOVB
values for these quantities depend to a large extent on the
representation (nonorthogonal or orthogonal) and on the
optimization strategy adopted for the wave functions. An
interesting question for future consideration is whether any
of the electronic-structure reorganization energies calculated
by the methods used here should be used as the solute
contribution to the reorganization energies106,107 for the
condensed-phase reaction.

The diabatic couplings obtained with the fourfold way
decrease steeply from the region of the transition state
towards reactants and products, where they are close to zero.
In contrast, the couplings obtained with the MOVB method
have a much larger magnitude, are either relatively constant
along the reaction coordinate or present a minimum in the
transition state region, and are nonzero in the reactant and
product regions. An exception is the nonorthogonal VDC-
MOVB model, which has qualitatively similar features to
those found by the fourfold way. These differences reflect
the fact that the diabatic coupling absorbs the nonuniqueness
in the definition of the diabatic states. No functional form is
assumed for the diabatic coupling in MOVB or in the
fourfold way since the diabatic coupling (off-diagonal

element of the Hamiltonian matrix) is determined by using
electronic structure methods; however, the values of the
diabatic coupling that are obtained are intimately determined
by the specific definition of the diabatic state wave function.
This is quite different from the situation in the EVB method,
where either an exponential dependence on the distance
between the nucleophile and the leaving group involved in
an SN2 reaction or a constant coupling as for the acetate +
DCE reaction is assumed.

The reaction energies obtained by density functional theory
and by the fourfold way agree well with those obtained by
the three high-level methods (G3SX, G3SX(MP3), and
BMC-CCSD), which predict values ranging from -10 and
-11 kcal/mol. The results for the diabatic states are
especially significant because in the fourfold way, changes
in the exponent of the diffuse basis functions of chlorine
and in the weight of the two adiabatic states involved in the
underlying SA-CASSCF wave function were carried out to
obtain simultaneously a barrier height and reaction energy
(on the adiabatic potential energy surface) in good agreement
with the high-level ab initio results. The resulting fourfold
way barrier (16.7 kcal/mol) agrees very well with the barriers
predicted by the high-level methods, especially with the most
reliable one, which is the G3SX//M06-2X value, and is
somewhat higher than the B3LYP value but lower than the
M06-2X value.

Although this perspective has been quantitatively il-
lustrated only with gas-phase diabatic states, most of the
considerations are equally valid for condensed-phase reac-
tions, for which a number of valence-bond electronic
structure approaches are now available.61,63,65,67,68,72,101,141

In previous work on aqueous SN2 reactions, the MOVB
method based on VDC diabatic states led to solute-solvent
interaction energies that vary weakly with the reaction
coordinate, in contrast to previous studies of other SN2
reactions using the EVB method.94 Further work on the
analogy between SN2234 and other types of reactions (such
as hydride, proton, or hydrogen atom transfer reactions in
enzymes106 or electron-transfer reactions90,91,93,235-241) and
on the reorganization energies defined in terms of CDC
diabatic states would be useful.

In light of the large quantitative differences between
diabatic states obtained by employing different defining
equations, algorithms, or representations, we recommend that
justification needs to be made for employing specific
definitions in specific contexts in cases where the quantitative
values are important. For qualitative discussion purposes, one
can have more leeway in the definition employed. In
applications to enzymatic reactions, it is useful, if possible,
to first investigate the corresponding model reaction in the
gas phase to justify the definition of diabatic states and to
validate the entire potential energy surface and structures of
the adiabatic ground state. Then, a valence-bond-based
potential can be used to model the reaction in aqueous
solution to validate or even to calibrate the interactions
between solute and solvent. Finally, after validation of the
potential energy surface in the gas phase and solute-solvent
interactions in water, the method can be applied to the
enzyme reaction to understand catalysis.
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5. Summary

Diabatic models are widely employed for studying chemical
reactivity in condensed phases and enzymes, but there has
been little discussion of the pros and cons of various diabatic
representations for this purpose. Here we discuss and contrast
six different schemes for computing diabatic potentials for
a charge rearrangement reaction. They include (i) the
variational diabatic configurations (VDC) constructed by
variationally optimizing individual valence bond structures
and (ii) the consistent diabatic configurations (CDC) obtained
by variationally optimizing the ground-state adiabatic energy,
both in the nonorthogonal molecular orbital valence bond
(MOVB) method, along with the orthogonalized (iii) VDC-
MOVB and (iv) CDC-MOVB models. In addition, we
consider (v) the fourfold way (based on diabatic molecular
orbitals and configuration uniformity), and (vi) empirical
valence bond (EVB) theory. To make the considerations
concrete, we calculate diabatic electronic states and diabatic
potential energies along the reaction path that connects the
reactant and the product ion-molecule complexes of the gas-
phase bimolecular nucleophilic substitution (SN2) reacton of
1,2-dichloethane (DCE) with acetate ion, which is a model
reaction corresponding to the reaction catalyzed by haloal-
kane dehalogenase. We utilize ab initio block-localized
molecular orbital theory to construct the MOVB diabatic
states and ab initio multiconfiguration quasidegenerate
perturbation theory to construct the fourfold-way diabatic
states; the latter are calculated at reaction path geometries
obtained with the M06-2X density functional. The EVB
diabatic states are computed with parameters taken from the
literature. The MOVB and fourfold-way adiabatic and
diabatic potential energy profiles along the reaction path are
in qualitative but not quantitative agreement with each other.
In order to validate that these wave-function-based diabatic
states are qualitatively correct, we show that the reaction
energy and barrier for the adiabatic ground state, obtained
with these methods, agree reasonably well with the results
of high-level calculations using the composite G3SX and
G3SX(MP3) methods and the BMC-CCSD multicoefficient
correlation method. However, a comparison of the EVB gas-
phase adabatic ground-state reaction path with those obtained
from MOVB and with the fourfold way reveals that the EVB
reaction path geometries show a systematic shift towards the
products region and that the EVB lowest-energy path has a
much lower barrier. The free energies of solvation and
activation energy in water reported from dynamical calcula-
tions based on EVB also imply a low activation barrier in
the gas phase. In addition, calculations of the free energy of
solvation using the recently proposed SM8 continuum
solvation model with CM4M partial atomic charges lead to
an activation barrier in reasonable agreement with experiment
only when the geometries and the gas-phase barrier are those
obtained from electronic structure calculations, i.e., methods
i-v. These comparisons show the danger of basing the
diabatic states on molecular mechanics without the explicit
calculation of electronic wave functions. Furthermore, com-
parison of schemes i-v with one another shows that
significantly different quantitative results can be obtained by
using different methods for extracting diabatic states from

wave function calculations, and it is important for each user
to justify the choice of diabatization method in the context
of its intended use.
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Appendix: Computational Details

In the MC-QDPT calculations, the intruder-state avoidance
(ISA)242 method has been used to avoid artifacts due to
intruder states in the MC-QDPT wave function. The level
shift parameter242 b of the ISA method was set to 0.02Eh

2 (1
Eh ≡ 1 hartree).

Initially, the MC-QDPT calculations used the 6-31+
G(d)184-187 basis set. However, the resulting MC-QDPT
reaction profiles had artifacts in either the reactant or the
product region, depending on the weights of the electronic
states in the CASSCF step. This problem is caused by the
diffuse functions, especially those on the carbon and oxygen
atoms, because the character of the excited state in the
reactant and product regions is that of a resonance embedded
in the continuum, as has been explained elsewhere.144 This
problem was eliminated by omitting diffuse functions on all
atoms except on the two chlorine atoms of DCE. Further-
more, the exponents of the diffuse functions of chlorine were
increased from the standard value of 0.483 to 0.09 to obtain
a good reaction energy and barrier. The resulting basis set
will be denoted as 6-31&G(d).

Several SA-CASSCF(4,3) calculations were performed in
which the weight of the two electronic states in the state
average was varied in the range 50:50 to 90:10. Other
combinations of weights in which the excited state has a
higher weight than the ground state yielded an unbalanced
description of the adiabatic states and were discarded. The
best state weightings were ascertained by comparison to the
high-level calculations and were found to be those with 75:
25 weights, and these are used in the rest of this article.

The first step in the application of the fourfold way to the
acetate + DCE system is to establish a standard orientation
so that the Cartesian coordinates of the atoms are uniquely
and continuously defined at all nuclear configurations. In the
standard orientation, the molecule is situated as follows.
The attacking oxygen of CH3CO2

- is placed at the origin,
the carbon atom of ClCH2CH2Cl that is attacked by that
oxygen is on the positive Z axis, and the chlorine atom that
is bound to that carbon atom in reactants, acetate + DCE, is
on the first quadrant of the XZ axis. The remaining atoms
do not have a particular orientation since they do not
participate directly in the nucleophilic displacement reaction.
Two reference MOs were introduced as follows. The first
one is the oxygen lone pair of the attacking oxygen atom of
acetate, and it is obtained at the reactant ion-molecule
configuration by the threefold way. The second reference
MO is obtained by the threefold way at the product ion-
molecule configuration as the p orbital of the chloride ion
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which derives from the cleaved C-Cl bond. In order to keep
the character of the DMO centered on the chlorine atom fixed
it becomes necessary to define a specific molecular orienta-
tion (denoted by primed coordinates), and for a general
molecular geometry the reference MO must be transformed
to the standard orientation (unprimed). The reference MO
centered on the oxygen does not need a specific orientation
since the oxygen atom is always located at the coordinate
origin. The specific orientation is defined in the same way
as the standard orientation, except that the chlorine atom is
placed along the positive Z′ axis of the specific orientation.
The reference MO centered on the chlorine atom is trans-
formed from the specific to the standard orientation at each
point along the reaction coordinate by means of a rotation
matrix that depends on the angle between the C-Cl bond
and the Z axis.

It is necessary to have a one-to-one correspondence of the
fourfold-way DMOs at consecutive geometries. For this, two
reference geometries have to be chosen in regions where
diabatic states are equal to adiabatic states to a good
approximation. The fourfold way is then carried out at each
of the reference geometries. The procedure is advanced by
taking several consecutive geometries separated by small
steps along the minimum energy path that connects reactants
and products. This procedure ensures that the DMOs of
products are ordered in the same way along the whole
reaction path so that they can produce consistent groups of
DCSFs.

The matrix elements of the MOVB Hamiltonian are
evaluated using methods for nonorthogonal determinants, and
the computational details can be found in refs 60 and 141.
In the VDC method, the MOs are obtained using a reor-
thogonalization technique,154 although an iterative sequence
of Jacobi rotations approach is also possible.155

The EVB parameters used in this work are presented in
Table S1 of the Supporting Information. The corrections with
respect to the way that the parameters are presented in ref
21 are (1) the bond angle force constants have been
transformed from (kcal/mol).rad-2 to (kcal/mol).deg-2; (2)
the C...O nonbonded van der Waals term is only included in
the reactant configurations, and the C...Cl term is only
included in the product configuration, and (3) for these terms,
the exponents have been changed to R ) 3.90 for the reactant
configuration, and to R ) 4.00 for the product configuration
to match the values used in the published21 work. These
corrections enable us to generate the EVB potential corre-
sponding to the treatment of ref 21.

Software. The fourfold way calculations were carried out
with HONDOPLUS, version 5.1;243 the BLW calculations
were performed using the Xiamen VB (XMVB) program;244

the Minnesota Gaussian Functional Module (MN-GFM),245,246

version 3.0 was used for the M06-2X calculations; the G3SX,
G3SX(MP3), and BCM-CCSD calculations were carried out
with MLGAUSS, version 2.0;246,247 and the SM8 solvation
free energy calculations were performed with the Minnesota
Gaussian Solvation Module (MN-GSM).248

Supporting Information Available: EVB parameters,
Cartesian coordinates of all the points calculated on the

ground-state adiabatic reaction paths, and MOVB overlaps.
This material is available free of charge via the Internet at
http://pubs.acs.org.
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(49) Pliego, J. R., Jr.; Piló-Veloso, D. Phys. Chem. Chem. Phys
2008, 10, 1118.

(50) Bickelhaupt, F. M. J. Comput. Chem. 1999, 20, 114.

(51) Zhao, Y.; Gonzalez-Garcia, N.; Truhlar, D. G. J. Phys.
Chem. A 2005, 109, 2012.

(52) Bento, A. P.; Sola, M.; Bickelhaupt, F. M. J. Comput. Chem.
2005, 26, 1497.

(53) Van Bochove, M. A.; Bickelhaupt, F. M. Eur. J. Org. Chem.
2008, 649.

(54) Shaik, S. J. Am. Chem. Soc. 1983, 105, 4359.

(55) Shaik, S.; Reddy, A. C. J. Chem. Soc., Faraday Trans.
1994, 90, 1631.

(56) Shaik, S.; Shurki, A. Angew. Chem., Int. Ed. 1999, 38, 586.

(57) Hiberty, P. C.; Shaik, S. Theor. Chem. Acc. 2002, 108, 255.

(58) Amovilli, C. In Valence Bond Theory; Cooper, D. L., Ed.;
Theor. Comp. Chem. Series 10; Elsevier: Amsterdam, 2002;
pp 415-445.

(59) Truhlar, D. G. J. Comput. Chem. 2007, 28, 73.

(60) Mo, Y.; Gao, J. J. Comput. Chem. 2000, 21, 1458.

(61) Gao, J.; Garcı́a-Viloca, M.; Poulsen, T. D.; Mo, Y. AdV.
Phys. Org. Chem. 2003, 38, 161.

(62) Blavins, J. J.; Cooper, D. L.; Karadakov, P. B. J. Phys.
Chem. A 2004, 108, 914.

(63) Song, L.; Wu, W.; Zhang, Q.; Shaik, S. J. Phys. Chem. 2004,
108, 6017.

(64) Song, L.; Wu, W.; Hiberty, P. C.; Shaik, S. Chem. Eur. J.
2006, 12, 7458.

(65) Hong, G.; Rosta, E.; Warshel, A. J. Phys. Chem. B 2006,
110, 19570.

(66) Su, P.; Wu, W.; Kelly, C. P.; Cramer, C. J.; Truhlar, D. G.
J. Phys. Chem A, published online at DOI:10.1021/
jp711655k.

(67) Sharir-Ivry, A.; Crown, H. A.; Wu, W.; Shurki, A. J. Phys.
Chem. A 2008, 112, 2489.

(68) Sharir-Ivry, A.; Shurki, A. J. Phys. Chem. A, published
online at DOI:10.1021/jp801722e.

(69) Gao, J. J. Am. Chem. Soc. 1991, 113, 7796.

(70) Gao, J.; Xia, X. J. Am. Chem. Soc. 1993, 115, 9667.

(71) Amovilli, C.; Mennucci, B.; Floris, F. M. J. Phys. Chem. B
1998, 102, 3023.

(72) Su, P.; Ying, F.; Wu, W.; Hiberty, P. C.; Shaik, S.
ChemPhysChem 2007, 8, 2603.

(73) Grochowski, P; Lesyng, B.; Bala, P.; McCammon, J. A Int.
J. Quantum Chem. 1996, 60, 1143.

(74) Trylska, J.; Grochowski, P.; Geller, M. Int. J. Quantum
Chem. 2001, 82, 86.

(75) Kolmodin, K.; Hansson, T.; Danielsson, J.; Åqvist, J. In
Transition State Modeling for Catalysis; Truhlar, D. G.,
Morokuma, K., Eds.;ACS Symposium Series 721; American
Chemical Society: Washington, DC, 1999; p 370.

(76) Rothman, M. J.; Lohr, L. L., Jr.; Ewig, C. S.; Van Wazer,
J. R. In Potential Energy Surfaces and Dynamics Calcula-
tions; Truhlar, D. G., Ed.; Plenum: New York, 1979; p 653.

(77) Chandrasekhar, J.; Smith, S. F.; Jorgensen, W. L. J. Am.
Chem. Soc. 1984, 106, 3049.

(78) Kottalam, J.; Case, D. A. J. Am. Chem. Soc. 1988, 110,
7690.

(79) Steckler, R.; Truhlar, D. G. J. Chem. Phys. 1990, 93, 6570.

(80) Heidrich, D. In The Reaction Path in Chemistry: Current
Approaches and PerspectiVes; Heidrich, D., Ed.; Kluwer:
Dordrecht, 1995; p 1.

(81) Shavitt, I. Theoretical Chemistry Laboratory Technical
Report No. WIS-AEC-23; University of Wisconsin:
Madison, 1959.

(82) Marcus, R. A. J. Chem. Phys. 1966, 45, 4493.

(83) Truhlar, D. G.; Kuppermann, A. J. Am. Chem. Soc. 1971,
93, 1840.

(84) Fukui, K. In The World of Quantum Chemistry; Daudel,
R., Pullman, B., Eds.; Reidel: Dordrecht, 1974; p 113.

Perspective J. Chem. Theory Comput., Vol. 5, No. 1, 2009 19



(85) Natanson, G. A.; Garrett, B. C.; Truong, T. N.; Joseph, T.;
Truhlar, D. G. J. Chem. Phys. 1991, 94, 7875.

(86) Alhambra, C.; Gao, J.; Corchado, J. C.; Villà, J.; Truhlar,
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Abstract: Dispersion corrected atom centered potentials
(DCACPs) have been shown to significantly improve the
density functional theory (DFT) description of weak inter-
actions. In this work, we have calibrated a DCACP for
sulfur in combination with the widely used Generalized
Gradient Approximation (GGA) BLYP, thereby augmenting
the existing library of DCACPs for the first- and second-
row elements H, C, N, O, and rare gases. Three weakly
bound complexes as well as elemental (orthorhombic)
sulfur are used as test cases to evaluate the transferability
of the DCACP to different chemical environments. It is
found that the sulfur DCACP systematically improves the
agreement of DFT-calculated weak interactions with re-
spect to MP2 and CCSD(T) level results.

I. Introduction
Dispersion corrected atom centered potentials (DCACPs) were
introduced1 to address the inadequate treatment of dispersion
forces in Kohn-Sham density functional theory (DFT) when
used in conjunction with approximated local or semilocal

exchange-correlation functionals. The widely used generalized
gradient approximation (GGA) and local density approximation
(LDA) functionals are intrinsically unable to correctly reproduce
dispersion forces, since dispersion forces are, by their nature, a
nonlocal effect, whereas these functionals only depend on local
quantities (density or density gradient). The procedure reported
in the recent literature1,2 constructs an analytic atom-centered
correction term calibrated such that the treated DFT method
correctly reproduces the MP2 or CCSD(T) level binding energy
for a dispersion-dominated interaction. Existing work demon-
strates that DCACPs can significantly improve the DFT descrip-
tion of dispersion interactions of rare gases (He, Ne, Ar, Kr)
and molecules involving elements C, H, N, and O for a wide
variety of chemical environments.2-6 In a similar approach
aimed at mixed quantum mechanical/molecular mechanical
calculations, DiLabio7 also makes use of adjustable atom
centered potentials (termed Quantum Capping Potentials) of
carbon atoms to successfully describe dispersion forces between
hydrocarbon molecules in DFT calculations. A number of other
methods to recover the dispersion forces in DFT exist; attempts
have been made to directly include dispersion forces in the DFT
formalism8,9 promising a more rigorous treatment, but these
approaches are currently too time-consuming for any practical
applications or are otherwise limited. Other authors use a purely
empirical van der Waals correction,10 similar to the approach
taken with DCACPs.

In this work, a DCACP was calibrated for sulfur using
CCSD(T)/aug-cc-pVTZ calculations of the weakly interacting
CS2 dimer as a reference. The resulting DCACP is hypoth-
esized to be generally valid for weak interactions arising from
other chemical environments, i.e. to exhibit good transfer-
ability. To assess the transferability of the DCACP to
chemical environments differing significantly from the
calibration system, the DCACP was applied to four test
systems (Figure 1): solid elemental sulfur; the SO2 dimer; a
hydrogen bonded CH3OH-S(CH3)2 complex; and to the
internal rotation of 2′ ,3′-dideoxytiazofurin. For all systems,
results from DFT with DCACPs were compared to uncor-
rected DFT and to high-level benchmark (MP2 or CCSD(T))
calculations or experimental data. DFT results for the test
systems are reported using the BLYP functional, which has
been found previously to perform well in conjunction with
DCACPs compared with other functionals (PBE, BP).2 BLYP
usually shows the most repulsive van der Waals interactions
among GGA functionals, hence the DCACP for BLYP is

* Corresponding author e-mail: ursula.roethlisberger@epfl.ch; url:
http://lcbcpc21.epfl.ch.

† University of Oxford.
‡ Environmental Chemistry Modeling Laboratory, Ecole Poly-

technique Fédérale de Lausanne.
§ University of Tokyo.
| Laboratory of Computational Chemistry and Biochemistry,

Ecole Polytechnique Fédérale de Lausanne.

J. Chem. Theory Comput. 2009, 5, 23–28 23

10.1021/ct800299y CCC: $40.75  2009 American Chemical Society
Published on Web 12/22/2008



consistently attractive2 and therefore most likely to meaning-
fully represent dispersion forces.

II. Method

A. Construction, Calibration, and Testing of the
DCACP for S. The dispersion correction consists of an atom-
centered term which is applied to every atom in the system.
The DCACP for sulfur has the mathematical form of the
nonlocal f-channel of Goedecker type11 pseudopotentials

Vf,RI

DCACP(r, r ′)) ∑
m)-3

+3

Yf
m(r̂)pf (r; σ2)σ1pf(r ′ ; σ2)Yf

m/(r̂ ′) (1)

where r ) |r - RI| is the distance from sulfur nucleus I, r̂ is
the unit vector in the direction of r - RI, and Yf

m denotes
spherical harmonics of angular momentum l ) 3. Each atom at
position RI in the system adds a VRI

DCACP(r, r′) term to the external
potential Vext(r, r′) of the system, such that the total external
potential is V′ext(r, r′) ) Vext(r, r′) + ∑IVRI

DCACP(r, r′). The DCACP
for each atom is completely specified by two parameters that
are determined by the calibration procedure: σ1, which deter-
mines the amplitude of the potential, and σ2, which describes
the width of the radial projector operator pf. These parameters
must be calibrated specifically for each element and exchange-
correlation functional. In this work, the DCACP parameters were
determined for the GGA functional BLYP with respect to sulfur.

The calibration follows a recently established method2 and
proceeds by minimizing a penalty functional

P(σ1, σ2)) |Eminpoint
Benchmark -EDCACP(rmin)|

2 + |Emidpoint
Benchmark -

EDCACP(rmid)|
2 +∑

I

wIFI
2 (2)

where rmin and rmid are the equilibrium and midpoint distance
of the intermolecular interaction energy curves of the CS2 dimer
given by benchmark calculations; the midpoint is the distance
where the interaction energy is half the equilibrium energy. FI

is the force on nucleus I of the complex at the benchmark
equilibrium distance, rmin. The weighting factor wI determines
the relative importances of the ionic force term and energy terms
in the penalty functional and has units of distance. It was chosen
as wI ) 100 atomic units for all sulfur atoms and zero for the
carbon atoms, analogous to previous calibrations of the other
elements; details on the determination of the weighting factor
can be found elsewhere.2

B. Computational Methods. The performances of the DFT
and dispersion corrected-DFT methods were evaluated based
on predictions for geometries and energies of weak interactions.
Intermolecular dissociation energies were reported in terms of
De in the notation of Herzberg,12 i.e. zero point vibrational and
thermal contributions were excluded. DFT energies were
computed using the plane-wave code CPMD13 with the pseudo-
potentials of either Goedecker et al.11 (using a plane-wave cutoff
of 170 Ry) or Troullier and Martins14 (using a plane-wave cutoff
of 70 Ry). The nuclear geometries for DFT calculations were
fully relaxed using the same level of theory as the DFT
computed energies, except where noted otherwise. Therefore,
for most cases, the DFT energies were assessed using geometries
that were different than the benchmark geometries. The ability
to correctly predict theoretical or experimental benchmark
geometries was itself part of the DFT performance evaluation.
Benchmark geometries were taken either from theory or
experiment, as explained in the Results. In cases where
benchmark geometries were computed, we used MP2/aug-cc-

Figure 1. Molecular structures of the systems that were assessed. (a) CS2 dimer: all 6 atoms lie in one plane, the two linear
CS2 molecules are parallel. (b) Crystalline cyclic octasulfur: the unit cell (orthorhombic, a ) 10.38 Å, b ) 12.75 Å, c ) 24.41 Å,
space group no. 70, Fddd) contains 16 S8 molecules. Experimentally determined structure.20 (c) SO2 dimer: Cs symmetry, rcm

is the distance between the centers of mass, θ1 or θ2 is the angle formed by the two centers of mass and the sulfur atom of the
respective SO2 molecule. (d) Methanol dimethylsulfide complex: Cs symmetry. (e) 2′,3′-Dideoxytiazofurin, experimentally
determined crystal structure.30
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pVTZ or higher wave function theory methods. Benchmark
energies were computed at a level of wave function theory that
was considered appropriate and reasonably computationally
affordable for each case, ranging from MP2/aug-cc-pVDZ (for
2′,3′-dideoxytiazofurin) to CBS-QB3 (for the CH3OH-S(CH3)2

complex). For example, a recent assessment found that MP2/
6-31+G(d,p) and CCSD(T)/6-311+G(d,p) gave reasonable
results for dispersion-dominated interactions, but a complete
basis set extrapolation (CBS-QB3) was needed for accurate
treatment of hydrogen bond energies.15 All benchmark energies
were computed using either the MOLPRO 2006.116 or Gauss-
ian0317 software packages.

III. Results

A. Calibration. Ideally, DCACPs are calibrated using mo-
lecular complexes which are (a) primarily bound by dispersion
forces; (b) closed shell systems with a well defined ground state;
and (c) small enough to be treated with high-level (MPn,
CCSD(T)) methods. To develop a DCACP for sulfur, we chose
the CS2 dimer in its parallel conformation as a reference system
(symmetry D2h, Figure 1(a)). The parallel conformation cancels
quadrupole moment electrostatic contributions to the intermo-
lecular interaction. CS2 is analogous to CO2, which had
previously been used to calibrate the DCACP for oxygen.2

Compared to CO2, CS2 is highly polarizable and exhibits very
weak electrostatic interactions with the environment.18 This
suggests that the CS2 dimer will interact primarily via dispersion
and exchange forces, making it an ideal candidate for calibration
of the sulfur DCACP.

The benchmark method (CCSD(T)/aug-cc-pVTZ with coun-
terpoise correction)19 predicted a significant dispersion interac-
tion for the CS2 dimer. We found an interaction energy minimum
of -5.9 kJ/mol at an intermolecular separation distance of r )
4.10 Å (Figure 2). In the range of r ) 3.5 to 5.5 Å, the
benchmark interaction energy was consistent with a fitted
Lennard-Jones type 12-6 potential at the 1% significance level
(�2 test). By comparison, BLYP predicted a purely repulsive
interaction at all intermolecular distances.

The sulfur DCACP was calibrated using the existing carbon
DCACP2 for the two carbon atoms in the CS2 dimer, and the
sulfur DCACP parameters σ1 and σ2 were determined by
minimizing the penalty functional given by eq 2. Table 1 shows
the sulfur DCACP parameters found for the DFT functional,
BLYP. When applied to a large range of CS2 dimer intermo-
lecular distances, the calibrated sulfur DCACP gave good
agreement with the CCSD(T) benchmark (Figure 2).

B. Transferability. To evaluate the transferability of the
sulfur DCACP to chemical environments other than that of
the calibration system, four systems were evaluated (geom-
etries shown in Figure 1). In all cases, calculations using
the existing suite of DCACPs for H, C, N, and O,2 together
with the newly calibrated sulfur DCACP, were compared to
both uncorrected DFT and high level benchmark calculations,
where possible.

Crystalline Orthorhombic Sulfur. Crystalline orthorhombic
sulfur (also known as cyclic octasulfur), having a unit cell
that consists of 16 S8 molecules, has been well characterized
at a temperature of 100 K by X-ray diffraction.20 In a simple
qualitative assessment of DFT predictions for this crystal,

the DFT methods were used to fully relax the geometry of
the crystal in orthorhombic periodic boundary conditions; the
experimental crystal structure geometry was used as an initial
guess, and the experimentally observed lattice parameters
were imposed. At the relaxed geometry, the association
energy of the crystal was determined, defined as the total
energy of the crystal structure divided by 16, minus the
energy of the S8 monomer.36 In this qualitative test, BLYP
wrongly predicted a pure repulsive, positive association
energy (87 kJ/mol), indicating that the crystal structure should
not exist. By comparison, BLYP with the sulfur DCACP
predicted a negative association energy (-82 kJ/mol),
suggesting that crystal structure formation is favorable with
respect to the gas phase S8 monomer.

In a more sophisticated test, the crystal structure lattice vector
lengths a, b, c were allowed to vary isotropically (with the lattice
angles kept fixed). At each lattice volume, the crystal structure
geometry was completely relaxed, with the aim of finding the lattice
volume that would correspond to a global energy minimum.37

Within a computationally feasible interval around the experimental
value (Figure 3), BLYP never predicted a favorable association
energy. By contrast, BLYP with sulfur DCACP found a minimum
of the association energy with lattice vectors that are only 3.4%
longer than the experimentally observed lengths. In summary,
conventional BLYP does not even qualitatively correctly predict
the existence of orthorhombic elemental sulfur. However, when

Figure 2. The calculated CS2 dimer interaction energy versus
intermolecular distance (r) using three methods. In all cases
(BLYP, BLYP with DCACP, and CCSD(T)), the C-S bond
lengths were kept fixed at 1.558 Å (based on a B3LYP/
6-311+G(2d) geometry optimization of the monomer34 and
in agreement with the experimental value),35 and r was the
only internal coordinate varied. When BLYP is used with the
calibrated DCACP, an interaction energy minimum of -5.6
kJ/mol is found at a separation distance of r ) 4.15 Å, in
agreement with the benchmark method (CCSD(T)/aug-cc-
pVTZ with counterpoise correction).19 By contrast, uncorrected
BLYP predicts a purely repulsive interaction.

Table 1. Sulfur DCACP Calibration Results

functional σ1 [Hartree] σ2 [Bohr] Emin [Hartree] Emid [Hartree]

BLYP -1.393 ·10-3 3.273 -2.242 ·10-3 -1.004 ·10-3

benchmarka - - -2.244 ·10-3 -1.001 ·10-3

a CCSD(T)/aug-cc-pVTZ with counterpoise correction.19
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the sulfur DCACP is applied, BLYP predicts favorable crystal
structure formation, having an energetic minimum at lattice vectors
that are close to those observed experimentally.

To further evaluate the sulfur crystal calculations, we compared
predicted and experimental enthalpy of deposition (i.e., the negative
of the enthalpy of sublimation) at 0 K. The computed deposition
enthalpy was given by the calculated association energy of the
relaxed structure at the optimized crystal lattice lengths (-89.1
kJ/mol), plus the estimated change in zero point energy (ZPE) in
going from the gas phase to solid phase (-0.3 kJ/mol).38 We obtain
a value of -89.4 kJ/mol, which can be interpreted as the energy
of forming orthorhombic sulfur from gaseous S8 at a temperature
of 0 K. By comparison, the experimental deposition enthalpy,
extrapolated to 0 K, is -105.7 kJ/mol.39 This shows that the
DCACP correction not only corrects the qualitative DFT prediction
of a stable crystal structure but also estimates the quantitative
stability of the crystal with reasonable accuracy.

The SO2 Dimer. The SO2 interaction is important in atmospheric
chemistry, where the photooxidation of 2 SO2 to SO3 + SO is
believed to proceed mainly via a weakly bound gas phase SO2

dimer.23 Based on the theoretical and experimental data by Bone
et al.,24 the minimum energy configuration of the SO2 dimer has
Cs symmetry, as shown in Figure 1(c). In this conformation, BLYP
incorrectly predicted a very weak binding energy of only -2.2
kJ/mol (Table 2). By contrast, BLYP with DCACPs predicted a
-11.2 kJ/mol interaction energy, in close agreement with the
benchmark result of -11.5 kJ/mol (CCSD(T)/aug-cc-pVTZ with
counterpoise correction).19 Notably, BLYP with sulfur and oxygen
DCACPs predicted significantly stronger SO2 dimer binding energy
than BLYP with the DCACP corrections for oxygen only. Both
electrostatics and dispersion forces control the interaction between
SO2 molecules, which are strongly polar (SO2 experimental dipole
moment ) 1.633 Debye, i.e. comparable to that of water). Hence,
although the sulfur DCACP was calibrated using a dispersion-
dominated system (the CS2 dimer), its applicability extends to this
system, where electrostatics are also important.

The Hydrogen Bonded CH3OH-S(CH3)2 Complex. Hydrogen
bonding to sulfur may be relevant in biological systems, where
ligands could interact with methionine or cysteine groups, hence
modeling efforts may require accurate treatment of this contact.
BLYP significantly underestimated the hydrogen-bond binding
energy (-14.3 kJ/mol) and overestimated the hydrogen-bond
distance (2.44 Å), when compared to the CBS-QB3 benchmark
energy and MP2/aug-cc-pVTZ geometry (-25.3 kJ/mol and 2.33
Å; Table 3). By comparison, BLYP with DCACPs improved both
the equilibrium distance (2.33 Å) and binding energy (-26.2 kJ/
mol) of the CH3OH-S(CH3)2 hydrogen bond. The sulfur DCACP
makes a small but significant contribution (ca. 2 kJ/mol) to the
total binding energy, in comparison to the other DCACPs. It is
worth noting that dispersion forces may contribute significantly to
hydrogen bonding,25-27 which may partly explain why BLYP
sometimes poorly estimates this interaction.28

The Intramolecular Rotation of 2′,3′-Dideoxytiazofurin. The
molecule 2′,3′-dideoxytiazofurin [2-(2′,3′-dideoxy-�-D-glycero-
pentafuranosyl)thiazole-4-carboxamide, Figure 1] is a biologi-
cally active compound which has been shown to have clinically
effective antitumor activity.29 The molecule features an unusu-
ally close distance (2.83 Å) between the sulfur atom in the
thiazole ring and the oxygen atom O1′ in the furanose ring in
its crystal structure;30 several thiazole nucleoside analogs exhibit
the same close contact in their crystal structures,31 which
suggests that it is not due to a crystal packing effect but to an
attracting force between these two atoms. This attraction was
quantified by calculating the total energy at varying O-C-C-S
dihedral angles, φ (Figure 1). Figure 4 shows the variation of
the total energy as a function of φ. BLYP predicted correctly
the qualitative behavior of the energy profile but was systemati-
cally biased low by 2-3 kJ/mol. This reflects the strong
electrostatic component of the S-O interaction that is usually
reasonably accounted for by GGAs. By comparison, BLYP with
DCACPs exhibited very good agreement with the benchmark
data, having a root mean squared error of 0.73 kJ/mol with
respect to benchmark results (MP2/aug-cc-pVDZ counterpoise

Figure 3. The crystal association energy was evaluated at
several different cell parameters for orthorhombic sulfur, using
both conventional BYLP (left) and BLYP with DCACP (right).
The crystal geometry was fully relaxed at each cell size. The
horizontal axis shows the amount by which the cell parameters
a, b, c were isotropically varied from the experimentally
observed lengths. The suggested energetic minimum for
BLYP with DCACP, at lattice length variation of 3.4%, was
interpolated from the other points.

Table 2. Binding Energies of the SO2 Dimera

method De [kJ/mol] rcm [Å] θ1 θ2

benchmarkb -11.5 3.78 119.5 58.0
BLYP -2.2 4.00 132 64
BLYP with oxygen

DCACP only
-6.2 3.94 130 68

BLYP with oxygen
and sulfur DCACPs

-11.2 3.93 133 65

experimental32 N/A 3.822(1) 127.0(20) 60.5(6)

a DFT geometries were fully optimized at the indicated levels.
See Figure 1(c) for the meaning of geometrical parameters
rcm, θ1, and θ2. b MP4(SDQ)/aug-cc-pVTZ geometry and CCSD(T)/
aug-cc-pVTZ energy with counterpoise correction.19

Table 3. Hydrogen Bond Binding Energies and Equilibrium
Geometry Parameters of the CH3OH-S(CH3)2 Complexa

method De [kJ/mol] S · · ·H distance [Å]

benchmarkb -22.6 2.33
BLYP -14.3 2.44
BLYP with DCACPs for C, H, O -24.0 2.35
BLYP with DCACPs for C, H, O, S -26.2 2.33

a DFT geometries were fully optimized at the indicated levels.
b MP2/aug-cc-pVTZ geometry and CBS-QB3 energy33 evaluated
at the MP2 geometry.
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correction).19 Additional computations using only DCACPs for
the elements C, N, O, and H showed that the marginal
contribution of the sulfur DCACP is significant, relative to the
other DCACPs (Figure 4).

IV. Conclusion
The library of dispersion corrected atom centered potentials for
the GGA functional BLYP2 has been augmented by a third-row
element, sulfur. The very good results from four simple sulfur-
containing test systems show that the sulfur DCACP is highly
transferable to chemical environments other than the calibration
system. These tests show that, although the DCACP was calibrated
in a simple, almost purely dispersion controlled system (the CS2

dimer), significant improvements to the calculation of binding
energies are also achieved in weakly bound systems having strong
electrostatic interactions. Moreover, our results demonstrate that,
in several chemical environments, the sulfur DCACP makes an
important contribution to the weak interaction beyond that of the
DCACPs for other elements. With the sulfur atom DCACP now
at hand, there is now a full set of DCACPs available for modeling
a standard protein in DFT. A library of DCACPs applicable to
BLYP, PBE, and BP for sulfur and other elements is available
online at our Web site [see http://lcbcpc21.epfl.ch/dcacp/dcacp.ht-
ml].
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Abstract: State of-the-art density functional theory cal-
culations have been performed for the large fullerenes C180,
C240, C320, and C540 using the linear combination of
Gaussian-type orbitals density functional theory (LCGTO-
DFT) approach. For the calculations all-electron basis sets
were employed. All fullerene structures were fully optimized
without symmetry constrains. The analysis of the obtained
structures as well as a study on the evolution of the bond
lengths and calculated binding energies are presented. The
fullerene results are compared to diamond and graphene
which were calculated at the same level of theory. This
represents the first systematic study on these large
fullerenes based on nonsymmetry adapted first-principle
calculations, and it demonstrates the capability of DFT
calculations for energy and structure computations of large
scale structures without any symmetry constraint.

Introduction
Fullerenes are carbon clusters formed by the closing of a
graphite sheet with the needed curvature supplied by intersect-
ing, among a given number of graphitic hexagons, of twelve
pentagons.1,2 These carbon aggregates have been experimentally
known for more than twenty years,3 and, consequently, a large
number of works, experimental as well as theoretical, focused
on this subject (see, for example refs 4-7 and references
therein). One main reason for the large interest in the study of
fullerenes is certainly to be found in their particularly appealing
geometrical form. The best known fullerene is the so-called
buckminsterfullerene that contains sixty carbon atoms (C60) and
is composed of twelve pentagonal carbon rings located around
the vertices of an icosahedron and twenty hexagonal carbon
rings at the centers of icosahedral faces.3 Larger fullerenes that

have an icosahedral symmetry can be constructed8,9 as well.
These clusters, known as giant fullerenes, can be thought of as
cut-out pieces of graphene that are folded into final shape
(icosahedron). This kind of procedure generates twelve pen-
tagonal carbon rings situated around vertices of an icosahedron,
while all other carbon rings are hexagonal. Giant or large
fullerenes have been the subject of different theoretical studies
in the last years. For a more detailed overview we address the
reader to refs 10-23 and references therein. Most of these
studies were focused either to understand if the shape of these
clusters is spherical or faceted,10,11,15-19 to calculate their
response properties,12 or to test new algorithms developed for
the investigation of large systems.13,14 Most previous first-
principle type theoretical studies of large fullerenes have been
performed either at the Hartree-Fock level of theory using
symmetry restrictions and relative small basis sets or employing
analytic density-functional theory.10-23 To the best of our
knowledge, no systematic study on large fullerenes based on
nonsymmetry adapted first-principle calculations has been
performed so far. In this Letter we present the first all-electron
density functional theory based study on the large fullerenes
C180, C240, C320, and C540. The structures of these clusters were
fully optimized without any symmetry constraint. This work
provides insight into the structural changes, the evolution of
the bond lengths, and binding energies with increasing fullerene
size.

Computational Details
All calculations were performed using the density functional
theory (DFT) deMon2k program.24 The exchange-correlation
potential was numerically integrated on an adaptive grid.25 The
grid accuracy was set to 10-5 in all calculations. The Coulomb
energy was calculated by the variational fitting procedure
proposed by Dunlap, Connolly, and Sabin.26,27 The calculation
of the exchange correlation energy was performed employing
the auxiliary function density.28 The structure optimizations were
performed in the local density approximation (LDA) employing
the Dirac exchange functional29 in combination with the
correlation functional from Vosko, Wilk, and Nusair (VWN).30

DFT optimized double-� plus valence polarization (DZVP) all-
electron basis sets optimized for local functionals31 were
employed. For the structure optimization a quasi-Newton method
in internal redundant coordinates with analytic energy gradients
was used.32 The geometry optimizations were performed using
the parallel version of the deMon2k code.24 The convergence
was based on the Cartesian gradient and displacement vectors
with a threshold of 10-4 and 10-3 a.u., respectively. The
diamond and graphene calculations were performed in the same* Corresponding author e-mail: pcalamin@cinvestav.mx.
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theoretical framework employing the cyclic cluster model
(CCM).33 For this reason the here reported relative energy
differences between the fullerene binding energies and the
cohesive energies in diamond and graphene should be quite
reliable.

Results and Discussion
In Figure 1 the DFT optimized singlet structures of C180, C240,
C320, and C540 are depicted. These structures have been fully
optimized at the all-electron level using DZVP basis sets in
combination with the VWN functional. A long standing discus-
sion in the literature addresses the question if giant fullerenes
prefer a faceted or a spherical shape. This question was raised
by transmission electron microscopy (TEM) images that have
shown evidence of possible spheroidal structures in concentric
carbon particles.34-36 Using a divide-and-conquer method for
density functional calculations the structure and stability of C240

were studied, and the most stable structure was claimed to be
highly spherical.15 However, this result was not confirmed by
any successive theoretical work. Instead, all other calculations
indicated strong evidence of a faceted shape for this ful-
lerene.10,11,16-20 It has been clearly explained in the literature
that depending on the view axis, simulated TEM of icosahedral
fullerenes can provide either images with spherical or with
polyhedral shapes.18 In addition, an explanation of why
experimental results showed rounder shapes for large fullerenes
was also given.18 As Figure 1 shows our first-principle based
structure optimizations predict that larger fullerenes, C240, C320,
and C540, prefer a faceted shape. Moreover, as Figure 1 shows,
even for the smallest fullerene studied here, C180, there is clear
evidence that the faceted shape is preferred over a spherical
shape if first-principle all-electron optimizations without any
symmetry restriction are performed. Details about the timing
of these calculations are reported in ref 14. We notice that our

results are in agreement with most of the previous reported
theoretical studies.10,11,16-20 In order to gain more insight into
the structural changes of these systems as the number of carbon
atoms increases we performed a detailed analysis of the bond
length evolution. In Figure 2 the normalized number of bonds
for C180, C240 C320, and C540 are plotted versus the bond length.
The dashed line at 1.419 Angstrom represents the graphene bond
length obtained from the periodic deMon2k calculation.33 Most
obvious from this figure is the difference of C320 to all other
fullerenes. In fact, whereas usually a discrete distribution of bond
lengths is found, in C320, a wide, in some ranges almost
continuous, bond length distribution is observed. This clearly
indicates a break in the expected high symmetry of the system.
Our studies show that the C320 fullerene possesses a ground-
state potential energy surface (PES) of higher multiplicity, most
likely either triplet or quintet. This observation is in agreement
with the conclusions given by Fowler.37 Further test calculations
revealed that for this fullerene also in the cases of triplet and
quintet PESs the continuous bond length distribution observed
for the singlet PES persists. Of course, only nonsymmetry
adapted optimizations can lead to such a result. To the best of
our knowledge this symmetry breaking in larger fullerenes due
to their electronic structure has never been observed in previous
calculations. As Figure 1 shows the observed symmetry breaking
does not alter the global shape of the giant fullerene. For the
other systems, C180, C240, and C540, the expected discrete bond
length distribution is obtained, indicating that the symmetry of
the electronic structures matches with the expected geometrical
symmetry. In these systems the number of different bond lengths

Figure 1. Optimized structure of C180, C240, C320, and C540

fullerenes. The calculations have been performed with the
VWN functional in combination with DZVP basis sets.

Figure 2. Normalized number of bonds for C180, C240 C320,
and C540 versus the bond lengths (in Å).
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increases with system size, and an accumulation of bond lengths
around the graphene bond length is observed. More surprising
is the trend that the longest bond length in the cluster shortens
with increasing cluster size. This indicates that delocalization
increases with cluster size despite the global building pattern,
i.e. the appearance of twelve pentagons. With the aim to guide
future desirable experiments on large fullerenes and to gain more
information about their stability we have also explored the
behavior of the binding energy of the studied fullerenes with
increasing fullerene size. The results of the uncorrected binding
energy (in eV) per carbon atom obtained with the VWN
functional are illustrated in Figure 3. The inclusion of the basis
set superposition error (BSSE) decreases the calculated binding
energies to 8.64 eV (C180), 8.68 eV (C240), 8.69 eV (C320), and
8.75 eV (C540), respectively. The depicted trend in Figure 3 is
not altered by the BSSE correction. In fact the BSSE is in giant
fullerenes much smaller than for the equivalent graphene
calculation. As can be seen from Figure 3 the binding energy
increases monotonically with the number of carbon atoms
increases. This indicates that the large fullerenes become more
and more stable with increasing size. However, the increase is
very moderate. From the comparison of the CCM calculations
we find that the binding energy of C540 is very close to the
cohesive energy of diamond (8.78 eV). This indicates that C540

has a similar binding energy to diamond which fuels the hope
that such giant fullerenes could indeed be prepared. However,
the binding energy of even the largest fullerene, C540, studied
here is still far away from the corresponding value in graphene
which was calculated to be 8.91 eV.33 This is in the range of
other calculated cohesive energies for graphene.38,39 Because
the fullerenes and graphene calculations are performed within
the same theoretical framework, the relative energy differences
found here, are reliable.

Conclusions
In conclusion, state of-the-art density functional theory calcula-
tions have been performed for the large fullerenes C180, C240,
C320, and C540 using the linear combination of Gaussian-type
orbitals density functional theory. The calculations were of all
electron types. All structures have been fully optimized without
any symmetry restriction. This work confirms that for all large
fullerenes studied here a faceted shape is preferred over the

spherical shape. The analysis of the bond length evolution shows
for the C320 a qualitative different pattern than for the other
fullerenes. The most likely explanation for this difference is a
symmetry breaking in the electron structure of C320. The
shortening of the longest bond length with increasing cluster
size indicates that delocalization increases with cluster size. The
calculated binding energies are in the range of diamond but
considerably below the graphene value. Thus, even giant
fullerenes like the ones studied here are only meta-stable.
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Abstract: Kinetic isotope effects (KIEs) on the two alter-
native reactions, SN2 and E2, between hypochlorite anion
and ethyl chloride in water have been studied theoretically
using B3LYP and M06-2X functionals. It has been found
that the latter one yields more correct geometries and
energetics. Although, in the qualitative sense, KIEs ob-
tained using both DFT functionals are in agreement,
interpretation of some of them, like 18O-KIE in the present
case, leads to different mechanistic conclusions.

Introduction
The competition between SN2 (bimolecular nucleophilic sub-
stitution) and E2 (bimolecular elimination) reaction pathways
in the gas and condensed phases has been intensively investi-
gated over past few years.1 Both mechanisms are of significant
importance in organic chemistry. In environmental chemistry
frequently only analysis of the remaining reactant is possible,
and therefore means allowing distinguishing between the two
mechanisms received much attention. One of the ways to
differentiate these two types of reactions is to evaluate kinetic
isotope effects (KIEs); secondary deuterium KIEs are expected
at room temperature to be normal (larger than unity) for the E2
mechanism and inverse (smaller than unity) for the SN2
mechanism.

The above-mentioned competition has been examined both
theoretically and experimentally. Available theoretical studies
are mostly concerned with reactions occurring in the gas phase,
rarely introducing explicit solvent models that allow considering
solvation effects. To the best of our knowledge no studies on
E2 vs SN2 competition in condensed phases that involve implicit
(continuum) solvent model have been reported. Experimental
studies of the gas-phase reactions, on the other hand, remain

rather involved due to the instrumentation requirements and the
fact that both reactions lead to the same ionic product, which
makes the analysis quite troublesome.

In recent work, Hu and Truhlar2 have evaluated the reaction
rate constants and deuterium kinetic isotope effects on the
reaction between ClO- and C2H5Cl for both SN2 (eq 1) and E2
(eq 2) pathways in the gas phase, using dual-level generalized
transition state theory and statistical calculations based on high-
level, correlated electronic calculations. They have used MP2
theory level and modified aug-cc-pVDZ basis set.

ClO-+C2H5ClfC2H5OCl+Cl- (1)

ClO-+C2H5ClfClOH+C2H4 +Cl- (2)

Villano et al.3 have recently shown that experimental results
differ substantially from the theoretical predictions. This dis-
crepancy prompted us to extend studies of these model reactions.
Because of the shortage of the theoretical studies in the
condensed phase we have elected to model reactions in solution
by using implicit model of water. There are two additional
reasons for undertaking these studies. The first one is compu-
tational; DFT methods proved very efficient in predicting
mechanisms of chemical reactions and are used nowadays
routinely. In organic chemistry the B3LYP functional is being
considered the most robust and versatile. However, in recent
years a plethora of new functionals has been developed with a
promise of much better performance. One of the most recent
of these is the family of M0x functionals introduced by Truhlar
and co-workers.4 In this contribution we compare results
obtained with B3LYP and a number of M0x functionals. Second,
hypochloride is an important species in chemical, biochemical,
and atmospheric studies, but its reactivity is yet not fully
understood. It is used as a bleaching agent5 and as a disinfec-
tant.6 It is also a postulated intermediate in many enzymatic
halogenation/dehalogenation processes,7 yet its isotopic fate
remains puzzling.8 Thus it is of great interest to fully characterize
main mechanisms that involve this reactant.

Methods and Results
Calculations were carried out at the DFT level of theory using
the standard 6-31+G(d,p) basis set.9 The polarizable continuum
solvent model10 (PCM) with parameters for water was used.
UFF11 radii of all atoms, including hydrogen atoms, were used
in the cavity building. 1 molar concentration was assumed as
the standard state. The following functionals were employed:
B3LYP,12 M05,13 M05-2X,13 M06,14 and M06-2X.14 In the
reference calculations the MP215 level with the aug-cc-pVDZ
basis set16 was used. The Gaussian03 electronic structure* Corresponding author e-mail: paneth@p.lodz.pl.
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program17 alone or with the MN-GSM module18 was used. All
stationary points were fully optimized using default convergence
criteria. Vibrational analysis was performed for each stationary
point. All minima and transition states (TSs) were confirmed
to have zero and exactly one imaginary frequency, respectively,
and Hessians from these calculations were used in calculations
of KIEs by the conventional transition state theory using the
Isoeff program.19

Selected geometric parameters of the optimized transition
states are collected in Tables 1 and 2 for the SN2 and E2
mechanisms, respectively. Complete transition state structures
(together with Gibbs free energies and imaginary frequencies)
optimized in the reaction field of the implicit solvent are
collected in the Supporting Information. Atom numbering is
presented in the left panel of Figure 1, which illustrates the
transition state for the gas-phase SN2 reaction. The right panel
illustrates the structure of the corresponding transition state of
the E2 reaction. Table 3 summarizes nongeometrical results
obtained for these theory levels; energetics, Mulliken partial
atomic charges, dipole moments, imaginary frequencies, and
KIEs are collected.

Discussion
Previously reported results have been compared to MP2
calculations in which the aug-cc-pVDZ basis set has been
modified.2 Since not all geometric features of these structures
are available, we have repeated MP2 calculations using the full
aug-cc-pVDZ basis set. These results are collected in Tables 1

and 2 under the MP2 heading and are used in the following
discussion as the reference level for the DFT calculations in
which the standard 6-31+G(d,p) basis set has been used. The
last two lines in these tables list the root-mean-square deviation
of the listed bond lengths and valence angles from those obtained
at the reference level. As can be seen generally M0x functionals,
and especially the M0x-2X functionals, yield much better
geometric results than those obtained using B3LYP. We note
that the overall best performance is obtained with the M06-2X
functional, and therefore we have used it in the following
calculations.

From the mechanistic point of view results listed in Tables
1 and 2 indicate that the presence of the solvent leads to the
looser transition state of reaction (1); both O-C5 and C5-Cl10

bond lengths are longer than in the gas phase calculations.
These bond lengths are significantly shorter in M06-2X
calculations than in B3LYP suggesting that this latter theory
level overestimates bond lengths at transition states. The large
value of the C5-Cl10 bond indicated a late transition state.
In the case of the E2 mechanism inclusion of the solvent
results in elongation of the O-H3 bond and shortening of
the H3-C1 bond indicating that the transition state in the
gas phase is later than in the aqueous solution. Again this
change is exaggerated in B3LYP calculations.

In agreement with literature reports,20 B3LYP underestimates
the height of the activation barrier. This is corrected in M06-2X
calculations. The cost of calculations using this latter functional
is about 30% higher than when B3LYP is used both in energy

Table 1. Comparison of the Selected Geometrical Parameters of the SN2 Transition State

gas water

MP2 B3LYP M05 M05-2X M06 M06-2X MP2 B3LYP M05 M05-2X M06 M06-2X

Cl9-O 1.707 1.726 1.676 1.689 1.696 1.691 1.710 1.729 1.680 1.691 1.699 1.692
O-C5 2.097 2.198 2.138 2.118 2.149 2.101 2.105 2.216 2.704 2.134 2.186 2.115
C-C 1.510 1.501 1.491 1.503 1.491 1.504 1.508 1.497 1.486 1.499 1.487 1.501
C5-Cl10 2.168 2.235 2.278 2.205 2.227 2.198 2.197 2.256 2.282 2.229 2.242 2.219
C5-O-Cl9 108.1 114.3 115.0 109.8 111.1 109.6 106.3 111.8 111.8 108.1 108.3 108.6
H2-C1-H4 108.1 108.3 108.3 108.3 108.0 108.1 108.9 109.2 109.3 109.2 108.9 109.0
O-C5-C1 89.0 88.3 89.6 89.7 89.2 89.5 91.4 91.3 92.4 92.2 92.3 91.6
C5-C1-H3 109.1 108.3 89.6 108.3 108.7 108.6 109.1 108.4 108.2 108.4 108.8 108.6
Cl10-C5-C1 99.0 100.8 99.6 99.0 99.3 98.9 99.2 101.2 100.8 99.4 100.1 99.3
H7-C5-H6 117.4 117.0 117.3 117.4 116.7 117.3 117.6 117.2 117.2 117.7 116.8 117.6
rms(bonds) - 0.055 0.055 0.021 0.037 0.016 - 0.057 0.27 0.021 0.043 0.014
rms(angles) - 2.7 8.5 0.82 1.3 0.68 - 2.4 2.4 0.87 1.0 0.97

Table 2. Comparison of the Selected Geometrical Parameters of the E2 Transition State

gas water

MP2 B3LYP M05 M05-2X M06 M06-2X MP2 B3LYP M05 M05-2X M06 M06-2X

Cl9-O 1.713 1.725 1.681 1.689 1.696 1.691 1.713 1.721 1.673 1.688 1.687 1.690
O-C1 2.636 2.627 2.619 2.631 2.625 2.627 2.638 2.655 2.671 2.636 2.661 2.626
O-H3 1.226 1.281 1.209 1.237 1.246 1.217 1.299 1.376 1.426 1.310 1.408 1.286
H3-C1 1.412 1.353 1.416 1.395 1.379 1.411 1.341 1.281 1.245 1.326 1.254 1.341
H2-C1 1.099 1.093 1.092 1.089 1.095 1.092 1.097 1.092 1.090 1.088 1.092 1.091
C-C 1.436 1.425 1.426 1.425 1.429 1.433 1.424 1.415 1.407 1.414 1.407 1.419
C5-Cl10 2.108 2.212 2.115 2.146 2.104 2.094 2.197 2.350 2.426 2.250 2.406 2.201
C1-H3-O 175.6 171.9 171.8 176.9 177.9 177.1 176.8 174.8 179.1 177.5 177.4 177.4
H3-O-Cl9 102.9 106.4 108.0 103.8 103.5 104.3 101.2 103.3 101.4 102.2 98.9 103.3
H2-C1-H4 112.6 111.9 111.9 112.6 111.4 111.8 113.8 113.2 113.9 113.8 113.5 113.3
C5-C1-H3 102.8 105.3 105.9 103.3 105.2 104.1 99.9 102.2 100.5 100.3 101.2 101.2
Cl10-C5-C1 116.0 115.7 116.4 115.2 115.4 115.8 113.8 113.0 112.0 112.9 110.9 113.4
H6-C5-H7 112.6 113.4 112.3 113.2 112.1 112.3 114.2 115.0 115.6 114.8 115.3 114.1
rms(bonds) - 0.050 0.016 0.020 0.017 0.011 - 0.069 0.11 0.024 0.096 0.011
rms(angles) - 2.4 2.9 0.79 1.5 1.1 - 1.6 1.3 0.69 1.7 1.1
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and Hessian calculations, the price worth being paid since both
energetics and geometries obtained from M06-2X calculations
are closer to values obtained experimentally and at the theoreti-
cal reference level. Mulliken partial atomic charges21 are very
close for both these functionals. Harmonic frequencies, on the
other hand, show some differences. Most importantly, the imaginary
vibrations differ quite significantly, especially in the case of the
transition state for the E2 pathway. The high value of this frequency
in M06-2X calculations indicates the dominating contribution of
the proton movement in the reaction coordinate and implies that
nonclassical effects, in particular tunneling, should be considered
in the case of this mechanism.

Our focus in this contribution is on the consequences of using
B3LYP in calculations of isotope effects because this functional
has been used widely for many years in their calculations. It is
thus encouraging to note that in general values of KIEs obtained
for both mechanisms with B3LYP and M06-2X are not too
far apart, and qualitative conclusions drawn on the basis of
calculations at both considered theory levels should be quite
similar. Among heavy-atom KIEs two values deserve closer
inspection. 13C-KIE on the central carbon atom (C5) in the SN2
mechanism is underestimated by about 1% in B3LYP calcula-
tions. The absolute values of these KIEs correctly indicate a
primary isotope effect, but the position of the transition state

on the reaction coordinate may be assigned differently on the
basis of the value obtained with the B3LYP functional. The
other isotope effect is 18O-KIE in the E2 mechanism. It is inverse
KIE, i.e., it is smaller than unity. Inverse KIEs are obtained for
the incoming group nucleophiles since the number of bonds
increases on transition from reactants to the transition state.
B3LYP underestimates this isotope effect which may lead to a
conclusion that the reaction is stepwise and the intrinsic KIE is
partially masked by a commitment, i.e., that an isotope-
insensitive step is partly rate-determining.22 Furthermore, if the
observed value was close to 0.99, a different mechanism would
be suggested on the basis of the B3LYP calculations. It is worth
noticing that this 18O-KIE is a good indicator of the mechanism
since in E2 its value is closer to unity by 1% than when the
SN2 mechanism operates.

We are particularly interested in values of chlorine KIEs as
they can potentially be used for analysis of dehalogenation
pathways in environmental processes.8,23 The role of the
hypochlorite anion and its isotopic fractionation in enzymatic
halogenation/dehalogenation processes remains unclear.7 Disap-
pointingly, present results indicate that chlorine KIEs do not
provide any appreciable insight into the mechanism of the
studied reactions. The incoming group chlorine KIE is slightly
inverse for both mechanisms. The leaving group chlorine KIE
is slightly larger for the SN2 mechanism than for the E2
mechanism, but the difference is too small to be a diagnostic
of the mechanisms.
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Abstract: Sodium trioxodinitrate’s (Na2N2O3, Angeli’s salt) unique cardiovascular effects have been
associated with its ability to yield HNO upon dissociation under physiological conditions. Due to its
potential applications in new therapies for heart failure, the dissociation of Angeli’s salt has recently
received increased attention. The decomposition mechanism has been previously studied by quantum
mechanical methods using a continuum approximation (PCM) for the solvent effects. In this work
we use our recently developed interface of the Amber and Gaussian packages via the PUPIL package
to study Angeli’s salt dissociation in a hybrid QM/MM scheme where the water solvent molecules
are treated explicitly with classical mechanics while the solute is treated with full quantum mechanics
(UB3LYP/6-31+G(d) and UMP2/6-31+G(d)) level. Multiple steered molecular dynamics was used
with the Jarzynski relationship to extract the free energy profile for the process. We obtain 4.8 kcal
mol-1 and 6.4 kcal mol-1 free energy barriers for the N-N bond breaking for UB3LYP and UMP2,
respectively. The geometries and Mulliken charges for reactant, transition state, and products have
been characterized through a number of hybrid QM/MM molecular dynamics runs with the N-N
distance restrained to representative values of each species. The results highlight the role of individual
solvent molecules for the reaction energetics and provide a comparison point against implicit solvation
methods.

Introduction

In aqueous solution and in biological media, Angeli’s salt,
Na2N2O3 (AS, compound 1, Scheme 1),3,4 spontaneously
decomposes to yield the critical bioregulatory species nitroxyl
(HNO/NO-) and has been widely used in studies of nitroxyl’s
pharmacological properties.3-10 Similarities in structures and
decomposition rates of Angeli’s salt and NO donors such as
diethylamine-NO (Na[Et2NN(O)NO], DEA/NO) have al-
lowed comparison between the properties of NO and HNO,
revealing that, although some of pharmacological HNO
properties are similar to that of NO,5,6 the cardiovascular
effects elicited by HNO are often distinct.7,8

The suggested mechanism for the decomposition of
Angeli’s salt at physiological pH is believed to involve the
protonation of the dianion N2O3

2- on the NO oxygen to form

(2), followed by tautomerization into (3) and heterolytic
cleavage of the N-N bond releasing HNO (4) and NO2

-

(5), as depicted in Scheme 1 [the numbering in (3) shows
the convention adopted here].

The dissociation of Angeli’s salt in anaerobic medium was
recently the subject of a thorough quantum mechanical study
at the B3LYP/6-311+G(d) level of theory by Houk et al.,1

where the aqueous solvation energies were estimated by
single point calculations with implicit water, represented by
the Polarizable Continuum Model (PCM),9-12 on the vacuum-
optimized B3LYP/6-311+G(d) structures and applied to the
gas-phase energies. Some key structures were also reopti-
mized with PCM and the same basis set. The results of that
breakthrough work support the mechanism depicted in
Scheme 1 at physiological pH. The free energy barrier for
the N-N bond cleavage step was computed as 6.0 kcal/mol
in vacuum, changing to 7.8 kcal/mol when the structures are
reoptimized with PCM.1 A later experimental and theoretical
study of AS decomposition in aerobic conditions concluded
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that interaction with O2 is likely to occur only after the N-N
bond breakage.7

In the previous work, the free energies were obtained by
performing a standard vibrational frequency and thermo-
chemistry analysis, which yields the thermal energy correc-
tions to enthalpies and free energies. Thermochemical
quantities are calculated from the partition function using
the equations for noninteracting particles (ideal gas) in the
canonical ensemble, such as described in statistical thermo-
dynamics textbooks.13 The solvent effects were included by
using the Polarizable Continuum solvent Model (PCM)
which has the advantage of greatly reducing the size of the
system by approximating the bulk solvent by a homogeneous
dielectric continuum polarizable by the solute, which is
placed in a molecular-shaped cavity.9-12 The computational
speedup however comes at the price of neglecting the
atomistic nature of the solvent, and the solvent configura-
tional sampling is assumed to be implicit, ignoring local
anisotropies around the solute. The basic assumption of
continuum models is the notion that the implicit part of the
system (solvent) is well described by the bulk dielectric
constant. This also assumes that the structure and dynamics
of individual solvent molecules can be neglected. This
assumption obviously fails for the first solvation shells and
especially in the case of ionic compounds. Evidently the
choice of the system to be treated as the solute is then critical,
and recent studies indicate that, in some cases, inclusion of
explicit solvent molecules treated at the same level of theory
as the solute of interest may be required.14,15

Other alternatives for the inclusion of solvent effects that
explicitly take into consideration the structure of the solvent
include the use of molecular mechanics (MM) methods for
configurational sampling, followed by full QM calculations
on snapshots taken from the MM trajectories, with the solvent
molecules included as point charges. An example of this
strategy are the MD/QM16,17 and MC/QM18-22 methods
which use classical force fields and Molecular Dynamics
(MD) or Monte Carlo (MC) for configurational sampling,
respectively. Implicit in those methods, however, is the
assumption of reasonable overlap between the conformational
space sampled by the QM and MM potential energy surfaces.

Another possibility, which is the method of choice in the
present study, is the use of hybrid QM/MM simulations,
where a sampling method such as MD23,24 or MC25,26 is
used as before, but the energy is calculated by dividing the
system into two parts: a small section containing the portion
of interest (solute) and treated by quantum mechanics, plus
the remainder of the system (e.g., solvent) treated using
classical force fields. The MD or MC equations are then
propagated on this hybrid QM/MM surface.

Since a QM calculation is required at every MD or MC
step, most implementations of QM/MM use semiempirical
quantum Hamiltonians, such as the native QM/MM support

present in the latest version of the MD program AMBER
(Amber 9).27-29 (With the exception of fully quantum
methods such as Car-Parrinello30 or Born-Oppenheimer
Molecular Dynamics,31,32 the complexity of those methods,
however, limits the size of the system that can be accurately
treated.) These semiempirical methods have the shortcoming
of yielding unpredictable results if the system differs
significantly from the molecules present in the parametriza-
tion set. For more unusual molecules a full QM method may
be necessary, and interfaces have been designed between
MM and QM programs for that purpose, such as Chem-
Shell,33 QoMMMa,34 and, more recently our own, the PUPIL
package,2,35 developed initially in the Materials Science field
for the integration of arbitrary molecular dynamics and
quantum mechanics programs.36,37

We have recently reported2 interfaces of the PUPIL
package with the widely used programs Gaussian38 (for
quantum mechanics) and Amber27,39 (Molecular Dynamics).
The advantage of the PUPIL implementation lies in the fact
that the software packages communicate directly and exclu-
sively with the PUPIL interface: Whenever forces are needed
for the QM atoms during the MD calculation, AMBER
requests those from PUPIL, which then uses the QM program
of choice (Gaussian03 in the present case) to calculate those
forces and communicate them back to AMBER. Since each
package is an independent unit, it is possible to use any
method available in either package.

In the present work we report the application of the
Gaussian/PUPIL/Amber interface for the study of the An-
geli’s salt dissociation (Scheme 1) in explicit water, avoiding
the shortcomings of implicit solvation models. The N-
protonated Angeli’s salt (3) is treated quantum mechanically
and immersed in a box of classical TIP3P40 water molecules.
The Free Energy Profile for the N-N bond cleavage is
calculated by Multiple Steering Molecular Dynamics,41,42

which is implemented in AMBER. The present results are
compared to previous calculations1 to show the relevance
of explicit consideration of solvent molecules.

Theory

QM/MM. In the hybrid QM/MM scheme23,24 used here
the system is partitioned in two regions: a quantum mechan-
ical (QM) region comprising a small number of atoms
relevant to the specific problem being treated and a classical
mechanics (MM) region with all the remaining atoms. The
final Hamiltonian for such system can be written as

Ĥ) ĤQM + ĤMM + ĤQM⁄MM (1)

where ĤQM is the Hamiltonian for the QM part, calculated
using the QM program and method of choice, and ĤMM is
the Hamiltonian for the MM part, calculated by the MM
program using the usual force field equations. The remaining

Scheme 1. Proposed Mechanism for Angeli’s Salt Decomposition Pathway in Anaerobic Media
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term, ĤQM/MM, describes the interaction between the QM and
MM parts and typically contains terms for electrostatic, van
der Waals, and bonded interactions across the region
boundaries:

ĤQM⁄MM ) ĤVdW
QM⁄MM + Ĥelect

QM⁄MM + Ĥbonded
QM⁄MM (2)

In PUPIL’s QM/MM implementation, the ĤVdW
QM/MM term is

calculated as usual by the MM program, using the standard
12-6 Lennard-Jones in eq 3, and parameters derived from
the force field in use for both the QM and MM atoms. It has
been shown that the use of the MM parameters in this
interaction does not introduce significant errors in the
calculation.43

EVdW
QM⁄MM )∑

R

QM

∑
A

MM [ARA

RRA
12

-
BRA

RRA
6 ] (3)

The electrostatic interaction between the QM and MM
regions can be divided in two parts. First, the influence of
the MM atoms on the QM zone is taken into account by
electronic embedding: The MM atoms are passed to the QM
program as point charges fixed at their respective positions,
using the charge values from the force field parameters.
Second, the force contribution from the quantum atoms to
the total force acting upon each classical atom (Fi

QM) is
needed. Gaussian03 uses a fast multipole method to evaluate
the effect of the external charges onto the QM system,
allowing for a very fast calculation. However, this formalism
does not allow us to compute the forces from the QM region
onto the MM charges. In the present implementation these
forces are obtained after the QM calculation by projecting
the obtained electronic density into a grid (a Gaussian Cube
file) and calculating the interaction of the MM charge with
each point in the grid as in

Fi
QM ) ∑

j

Ncube

rij

qPCi
dqj

|rij|
3

(4)

where qPCi
is the MM point charge, Ncube is the total number

of electron density points, and

dqj )Fjdxdydz (5)

defines an individual volume element on the electron density
grid.

If covalent bonds cross the boundaries of the QM/MM
system PUPIL can use a link atom approach,44 where a new
quantum particle (link atom) is introduced along the bond
between the QM and MM region at a specific distance,
usually around 1 Å, in order to satisfy valence requirements.
The approach used by PUPIL has been described in more
detail elsewhere.2

Free Energies via Multiple Steering Molecular Dynam-
ics. The accurate calculation of the free-energy change along
the chemical reaction path remains a challenge, and different
methods have been developed to deal with this issue.24,42,45-68

The multiple steering molecular dynamics (MSMD) method
relates a system’s nonequilibrium dynamics to its equili-
brium properties and has been described in more detail else-
where,41,42,59,69-72 so only a short summary is presented here.

Consider a system subject to an external time-dependent
perturbation [λ)λ(t)] and described by the Hamiltonian
H(r,λ). Writing ∆G(λ) as the free energy change and W(λ)
as the external work performed on the system as it evolves
from an initial to a final state (λ0 f λ), the free energy and
work are connected by the Jarzynski relationship42

e-�∆G(λ) ) 〈e-�W(λ)〉 (6)

where the brackets represent an average taken over an
ensemble of molecular dynamics trajectories starting at
different snapshots extracted from an equilibrated ensemble
at the initial distance. It is important to note that eq 6 assumes
a converged average, which is formally true only with an
infinite number of process realizations. In practical applica-
tions standard deviations up to a few kT are considered
acceptable (see, for example, ref 61), and the error in ∆G
can be estimated by

∆G ≈ 〈W〉 - �
2

σW
2 (7)

which is just the result of a cumulant expansion of eq 642

and is the same as the fluctuation-dissipation relation
obtained earlier by Hermans.73

Also, the equilibrium average of a state function can
similarly be extracted from the nonequilibrium ensemble
by69,70

〈F(λ)〉eq )
〈F(λ)e-�W(λ)〉non-eq

〈e-�W(λ)〉non-eq

(8)

The time-dependent Hamiltonian H(r,λ) can be written as
the sum of the time-independent Hamiltonian for the
unperturbed system, H0(r), and a time-dependent external
perturbation, which here is chosen as a harmonic potential
whose minimum moves at a constant velocity, V. Represent-
ing the chosen reaction path as λ(r), one can write

H(r, λ))H0(r)+ 1
2

k[λ(r)- λ0 -Vt]2 (9)

The free energy of a process along the chosen reaction
coordinate can then be calculated by performing a large
number of simulations, each being one independent realiza-
tion of the process and starting from a different snapshot
extracted from an ensemble initially equilibrated at λ)λ0 and
then properly averaging the resulting work values as
described in eq 6.

Computational Methods. Due to the computational
demands of the QM methods applied here, a scheme was
devised to avoid long equilibrations at the QM level, which
involved the equilibration of the system in a sequence of
steps of increasing complexity. According to this scheme,
the system was first equilibrated and brought to 300 K by
fully classical molecular dynamics and then relaxed at the
approximated density functional SCC-DFTB74 level. Finally,
the initial structures chosen for the pulling simulations were
further relaxed at the final UB3LYP/6-311G(d,p)and UMP2/
6-311G(d,p) levels.

Parameters for the Angeli’s Salt. Even though the
Angeli’s salt is to be treated quantum mechanically classical
parameters are still needed since in the PUPIL system the
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MD program has no knowledge of the quantum system and
the parameter arrays still need to be correctly filled, and also
because classical MD simulations are performed in the initial
relaxation. Those parameters are not used for the final
analysis, where the solute is treated with full quantum
mechanics.

Starting from the published coordinates from Dutton et
al.1 (a07, supplemental information), the Antechamber27

program was used in conjunction with DIVCON75-77 to
generate General Amber Force Field (GAFF)78 parameters
for the Angeli’s salt, using AM1-BCC79,80 charges. All those
programs are part of the standard Amber distribution.27

System Preparation. The system was comprised of one
molecule of the N-protonated Angeli’s salt (3), one Na+ ion
added to neutralize the system, and a total of 2388 water
molecules (TIP3P),40 under periodic boundary conditions.
This system was first subjected to 10,000 minimization steps,
using the MM Hamiltonian to remove any clashes, and then
heated to 300 K during 100 ps at constant volume. A time
step of 1.0 fs and using a Langevin thermostat with a 2.0
ps-1 collision frequency were used. Finally, the system was
allowed to relax for an additional 100 ps at constant pressure
(1 atm) with a pressure relaxation time of 1 ps, still using a
fully MM Hamiltonian. All of these steps used the SHAKE
algorithm to restrain bonds containing hydrogen.81 Next, the
solute (3) was made quantum, to be treated with the
approximated Self-Consistent-Charge Density-Functional
Tight-Binding SCC-DFTB method,74,82 which we recently
implemented in the Amber package,28 and the remainder of
the system (water molecules plus Na+ ion) was treated
classically. The system was then relaxed again (using
Amber’s native QM/MM implementation28,29) for another
50 ps with constant volume, then 500 ps constant pressure,
and the same parameters as for the fully classical steps. At
this point, the system was considered to be sufficiently
equilibrated, and another 2 ns run at constant volume was
used to extract the average N-N distance, req (1.29 Å).

Generation of an Equilibrated Initial Ensemble (For-
ward Reaction). The Jarzynski equality assumes that all
pulling processes start from structures belonging to the same
initial equilibrated ensemble. To generate the initial struc-
tures, the N-N distance was restrained to a number slightly
smaller than req by applying a harmonic potential centered
at 1.27 Å with a large force constant (2500 kcal mol-1 Å-2)
and run a 3 ns QM/MM simulation using the SCC-DFTB
Hamiltonian for the solute, extracting 20 structures from the
last 2 ns. Finally, we run another 1000 steps of MD using
the Amber/PUPIL/Gaussian interface to treat the Angeli’s
salt as quantum at a much more computationally expensive
level, the unrestricted form of Becke’s 3-parameter hybrid
functional83 (UB3LYP) with the 6-311+G(d)84,85 basis set,
as implemented in Gaussian, while the rest of the system is
treated by MM, so that the starting structures are consistent
with this level of theory.

Multiple Steered Molecular Dynamics (MSMD). For-
ward Reaction. With the structures properly equilibrated at
the initial distance, the N-N bond in each structure was
broken using the Amber/PUPIL/Gaussian interface by run-
ning independent simulations starting from each of the 20

structures obtained as described above, treating the solute
(3) at the UB3LYP/6-311+G(d) level. In each simulation,
a harmonic potential with a large force constant (5000 mol-1

Å-2) is applied, and the center of the potential is moved from
1.27 to 4.0 Å at a 0.5 Å/ps or 5460 MD steps of 1.0 fs.

Reverse Reaction. From the 20 final structures obtained
in the pulling from reactants to products, one structure was
chosen. The system is then restrained at the final distance
(4.0 Å) and re-equilibrated for 3 ns using SCC-DFTB for
the solute from which 20 new structures were extracted from
the final 2 ns to generate an equilibrated ensemble at the
final N-N separation. These 20 structures were again
thermalized using the full DFT method for 1000 steps (2
ps) and then pulled in the direction of the reverse reaction,
i.e., to reform the N-N bond, following the same procedure
as described above.

Radial Distribution Functions. The N-N distances of
1.34 Å, 1.69 Å, and 4.00 Å were chosen as representatives
of the reactants, transition state, and products (see Table 1).
For those geometries, better statistics were obtained by
choosing one snapshot at the desired N-N distance from
each of the ten runs described for the forward reaction, and
this was used as the starting configuration for a 10 ps MD
run with the solute treated at the UB3LYP/6-311+G(d)
level, with the N-N distance restrained to the respective
value by a force constant of 5000 kcal mol-1 Å-2. After the
runs, the various trajectory files corresponding to each
distance were combined to yield a total of 100 ps MD
trajectory for the calculation of the Radial Distribution
Functions (RDFs), averaged geometries, and atomic Mullkien
charges.

Results and Discussion

As detailed in the previous section, the equilibrium N-N
distance at the SCC-DFTB/TIP3P level was determined
during equilibration to be around 1.29 Å. In order to obtain
a clear minimum in Free Energy, the pulling started at a
slightly smaller distance (1.27 Å) and was stopped at an
N-N distance of 4.0 Å. The set of 20 pulling realizations
yielded the distribution of work values shown in Figure 1
(a: forward, b: reverse reaction.) The work is set to zero at
the initial simulation distance. There is a large spread in work
values toward the end of the process, which is due to the
finite pulling speed: at the limit of infinitely small pulling

Table 1. Bond Distances and Free Energies Obtained
from Multiple Steered Molecular Dynamics (MSMD)
UB3LYP/6-311+G(d) for the Cleavage of the N-N Bonda

species pulling direction N-N distance (Å) ∆G (kcal/mol)

reactant forward 1.332 0.0
reverse 1.343 0.0
average 1.338 0.0
Dutton et al.1 1.311 0.0

transition state forward 1.676 4.77
reverse 1.696 4.86
average 1.686 4.81
Dutton et al.1 1.768 7.8

products forward 4.0 -3.78

a The maximum standard deviation is 2.94 kcal/mol for the
reaction and 1.3 kcal/mol at the transition state.
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speeds all work curves should be congruent. The maximum
standard deviation occurs close to the end points of the
simulations, being around 2.94 kcal/mol for the reaction
(∼4.9RT) and just ∼1.3 kcal/mol (∼2.18RT) at the transition
state.

The work values were averaged according to eq 6 to yield
the Free Energy change as a function of N-N distance
depicted in Figure 2. The free energy profiles for the forward
and reverse reactions agree extremely well for N-N
distances from 1.23 Å to around 1.8 Å, yielding basically
the same geometries for transition state and reactant and the
same activation energy. At larger distances some hysteresis
can be noted between the forward and backward pulling

curves which can be attributed to a high pulling velocity for
a charged system in an explicit water study, where the water
molecules need larger relaxation times to adjust to the
changing AS geometries, especially when the N-N bond is
almost broken.86 However, the free energy at the final pulling
distance (∼4.0 Å) is essentially the same. The energetic data
are shown in Table 1, together with results from previous
calculations by Dutton et al.1 using PCM (implicit) solvation.
The distances extracted from the multiple steered molecular
dynamics (MSMD) calculations are very close to the ones
obtained from implicit solvation. The interaction with explicit
water molecules slightly weakens the N-N bond as com-
pared to the PCM solvation, as indicated by the facts that
the N-N distance at the reactant is slightly larger (+0.03
Å) and that the transition state is reached at a smaller N-N
separation (-0.1 Å) in the explicit solvent case. The
difference in energies is more notable, and the presence of
the explicit solvent molecules stabilizes the transition state
by ∼3 kcal/mol (about 38%) compared to the PCM results.
(It is important to notice that the referred PCM results include
zero point energy and thermal corrections to 298 K which
lower the reaction barrier by 1.80 kcal/mol. Such corrections
are not explicitly included in our calculations. One can argue
that while an MD derived potential of mean force includes
at least part of the thermal component to the free energy, it
is clear that this does not include quantized vibrations.)

Those calculations were also repeated using second order
Møller-Plesset perturbation theory (MP2)87 for the quantum
region but with only 10 realizations of the process in each
direction (Figure 3). The results indicate a slightly larger barrier
than predicted with UB3LYP (∼6.5 kcal/mol) but still lower
than the PCM results. Previous studies have shown that B3LYP
generally underestimates reaction barriers by about 4 kcal/mol,
while MP2 calculations can oVerestimate the same barrier by
up to 6 kcal/mol.88-90 To the best of our knowledge, there is
no experimental barrier height estimate for this particular
reaction. Although these barrier height errors can in principle
be reduced by the use of a larger basis set, one of the previous
studies has shown that, already with the 6-31+(G) basis set,
the B3LYP functional can provide results with accuracy similar
to the one obtained with the aug-cc-pVTZ basis set,89 which

Figure 1. Work values (kcal/mol) obtained from the various
realizations of the forward (a) and reverse (b) processes. The
position of the zero was chosen as the reactants minimum in
(a) and the products in (b).

Figure 2. Free energy changes (in kcal/mol) for the breaking
of the N-N bond (forward process, blue) and forming the N-N
bond (reverse process, red), obtained with the Angeli’s salt
treated at the UB3LYP/6-311+G(d) level. Each curve is the
average of 20 process realizations according to eq 6.

Figure 3. Free energy changes(in kcal/mol) for the breaking
of the N-N bond(forward process, blue) and forming the N-N
bond(reverse process, red), obtained with the Angeli’s salt
treated at the UMP2/6-311+G(d) level. Each curve is the
average of 10 process realizations according to eq 6.
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indicates that any error in the current calculations is more likely
to be intrinsic to the B3LYP method instead of arising from
basis set incompleteness issues.

To gain more insight on the nature of the species involved,
additional molecular dynamics calculations were performed
with the N-N distance restrained to 1.34 Å, 1.69 Å, and
4.00 Å, corresponding respectively to reactant, transition
state, and product, and Table 2 compares the geometrical
properties of the different species. The values obtained by
Dutton et al.1 are also included as a reference. In general,
the values obtained in this work agree well with previous
calculations. In most cases, the reoptimization of the vacuum
structures in PCM generally brings the distances closer to
the ones obtained in explicit water.1 The largest discrepancies
are noted in the N-N distances: the distance for the reactant
in explicit water is very similar to the result obtained in
vacuum (∆d)0.006 Å) and addition of PCM considerably
shortens this distance (∆d)-0.027 Å), while the opposite
effect is seen at the transition state where ∆d)-0.049 Å is
obtained from gas phase calculation and a larger difference
(∆d)0.082 Å) under PCM calculations.

Figure 4 shows the Mulliken charge in each fragment
(NO2 in red and HNO in black) as a function of reaction
coordinate, averaged from all the forward pullings using
eq 8. The blue vertical line marks the N-N distance at

the transition state (∼1.67 Å, as determined from the
forward reaction). The averaged Mulliken charges for the
100 ps MD trajectory over each atom and moiety are
shown in Table 3.

At the N-N equilibrium distance the charge for each moiety
is about the same (∼-0.5 au). As the N-N distance increases
there’s initially a slight polarization in the HNO direction, due
to a charge transfer mainly from the NO2 oxygens to the
nitrogens involved in the N-N bond, as seen by the decrease
in the (negative) charge from the oxygens and corresponding
increase on the nitrogens. After the transition state most of the
excess charge in the HNO moiety is transferred to the NO2

side, and after ∼3 Å the charges at each fragment are stabilized
and the bond can be considered broken.

Figure 5 shows the radial distribution functions of water
molecules around the solute for the reactant, transition
state, and products. It is important to notice that, at an
N-N distance of 4.0 Å, the two fragments are still
interacting and the HNO hydrogen (H1) tends to form a
hydrogen bond to the NO2 oxygens as shown in Figure 6,
in detriment of the H-bond between it and water mol-
ecules, which explains the absence of a H-bond structure
around H1 in the products (Figure 5a). The H-bond
structure also disappears around the HNO oxygen (O2,
Figure 5b), due to its reduced charge in the product (Table
3). Since the transition state structure is close to the
reactants, one would expect the reactants and TS RDFs

Table 2. Bond Distances in Å and Angles in Degrees (( Standard Deviation) for the Different Species from AS
Dissociationa

reactant transition state products

coordinate This work (a) (b) This work (a) (b) This work (c)

O1-N1 1.252 ( 0.026 1.247 1.260 1.227 ( 0.026 1.223 1.223 1.260 ( 0.029 1.265
O3-N1 1.282 ( 0.029 1.278 1.280 1.234 ( 0.026 1.244 1.233 1.260 ( 0.029 1.265
N1-N2 1.338 ( 0.010 1.344 1.311 1.686 ( 0.009 1.637 1.768 4.000 ( 0.008 -
O2-N2 1.312 ( 0.031 1.299 1.303 1.294 ( 0.032 1.283 1.279 1.209 ( 0.019 1.200
H1-N2 1.023 ( 0.026 1.022 1.032 1.043 ( 0.029 1.042 1.049 1.060 ( 0.030 1.066
O1-N1-O3 123.9 ( 2.8 124.9 123.3 124.5 ( 3.1 124.6 123.9 116.2 ( 2.6 116.0
O1-N1-N2 119.5 ( 3.0 119.5 119.5 117.1 ( 3.9 117.9 117.1 - -
O2-N2-N1 124.3 ( 3.6 126.0 124.3 113.6 ( 4.0 115.7 111.6 - -
O2-N2-H1 120.8 ( 4.3 123.0 122.0 111.2 ( 3.8 112.9 110.8 109.3 ( 3.3 108.6
O1N1N2O2 -0.2 ( 13.2 12.1 -0.2 17.2 ( 14.7 25.2 17.0 - -
O1N1N2H1 180.4 ( 14.4 171.2 179.9 132.2 ( 17.7 143.0 130.1 - -
O1N1N2O3 -179.9 ( 7.3 -176.1 -180.0 -166.8 ( 8.6 -164.7 -165.2 - -

a This work: average values and standard deviation from 100 ps MD trajectory using PUPIL/Amber, with the N-N distance restrained to
the value shown. Columns marked with (a), (b), or (c) were obtained from the B3LYP/6-311+G(d) optimized structures reported in the
supplemental information from Dutton et al.:1 (a) structures optimized in vacuum; (b) structures optimized in PCM water; and (c) from the
nitrite and nitroxyl structures optimized in vacuum.

Figure 4. Average charges on the HNO and NO2 fragments.

Table 3. Mulliken Charges and Standard Deviation for
Different Species from AS Dissociation, Obtained from 100
ps MD Trajectory Using PUPIL/Ambera

atom reactant transition state products

O1 -0.27 ( 0.07 -0.19 ( 0.06 -0.33 ( 0.07
N1 0.12 ( 0.08 -0.02 ( 0.00 -0.30 ( 0.07
O3 -0.37 ( 0.07 -0.20 ( 0.06 -0.34 ( 0.07
total -0.52 -0.41 -0.97
O2 -0.48 ( 0.06 -0.43 ( 0.07 -0.07 ( 0.04
N2 -0.41 ( 0.07 -0.49 ( 0.07 -0.33 ( 0.04
H1 0.41 ( 0.07 0.34 ( 0.04 0.38 ( 0.04
total -0.48 -0.58 -0.02

a The N-N distance has been restrained to 1.338, 1.686, and
4.000 Å for reactant, TS, and products, respectively.
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to be mostly similar, and this is clearly what happens in
most cases. The small change in the RDFs from the
reactants to transition states is mainly due to the reduction
of charge in those atoms. The most noticeable difference
is in Figure 5d. As seen in Table 3, the charge on O1
greatly decreases going from reactants to TS which,
together with the fact that the charge in O2 is mostly
constant in the same range, explains the absence of the
clear H-bond around O1 in the TS. The charge in O1 is
then restored in the products, and a new H-bond is formed
as shown. A similar hydrogen bond also seems to form
with O3 in the product (Figure 5f). Charges over the N1
atom (see Table 3) from NO2

- product are more negative

(qN1)-0.30 au) than in the reactant (qN1)0.12 au) and
from the transition state (qN1)-0.02 au). That can easily
induce a closer distance between water hydrogen and the
N1 atom as it is shown in Figure 5c. The effect of the
(negative) charge increase in N2 going from reactant to
TS can be noted in Figure 5e, with the water molecules
at a slightly shorter distance in the TS.

Conclusions

We have presented a QM/MM study of the Angeli’s salt
dissociation in explicit water using the recently developed
Gaussian/PUPIL/Amber interface, where the Angeli’s salt

Figure 5. Radial distribution function (RDF) between water and Angeli’s salt atoms (AS) for reactants, transition state (TS), and
products (HNO,NO2

-).
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is treated by quantum mechanics at the UB3LYP/6-311+G(d)
level and the environment (water and counterion) are treated
classically. The multiple steered molecular Dynamics (MSMD)
was applied together with the Jarzinsky relationship to
determine the free energy change for the reaction. A free
energy barrier of 4.81 kcal mol-1 is obtained, ∼3 kcal mol-1

lower than previously reported by Dutton et al.1 using an
implicit (PCM) representation for the solvent effects, at the
same level of quantum calculation. Preliminary calculations
using MP2 and the same basis set for the quantum zone show
a higher barrier (∼6.5 kcal/mol) but still lower than the
previously reported values. The geometries, averaged over
the QM/MD trajectory, in general agree with the values
reported by Dutton et al.1
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Abstract: Low-dimensional stochastic models can summarize dynamical information and make
long time predictions associated with observables of complex atomistic systems. Maximum
likelihood based techniques for estimating low-dimensional surrogate diffusion models from
relatively short time series are presented. It is found that a heterogeneous population of slowly
evolving conformational degrees of freedom modulates the dynamics. This underlying hetero-
geneity results in a collection of estimated low-dimensional diffusion models. Numerical
techniques for exploiting this finding to approximate skewed histograms associated with the
simulation are presented. In addition, statistical tests are used to assess the validity of the models
and determine physically relevant sampling information, e.g. the maximum sampling frequency
at which one can discretely sample from an atomistic time series and have a surrogate diffusion
model pass goodness-of-fit tests. The information extracted from such analyses can possibly
be used to assist umbrella sampling computations as well as help in approximating effective
diffusion coefficients. The techniques are demonstrated on simulations of adenylate kinase.

1. Introduction

A significant understanding of complex biomolecules like
proteins and nucleic acids has been obtained through the use
of low-dimensional equations approximating the dynamics
of these systems.1,2 Single-molecule experiments and com-
puter simulations are allowing researchers to better under-
stand the physics governing complex biomolecular systems
at small length and time scales.1-16 Advances in nanotech-
nology are starting to demand higher accuracy from sto-
chastic dynamical approximations of small biomolecular
systems. Fortunately, the time series associated with current
experiments and simulations contain a rich amount of
information related to molecular motion occurring over a
broad range of time scales.17 However, the presence of a
wide range of relevant time scales significantly complicates

determining reliable low-dimensional models associated with
small scale, but highly complex systems.18-21 We refer to
such approximate models as “surrogate” models; some
authors use the term “effective model” in a similar
context.20-22

In single-molecule experiments, researchers can usually
only monitor and/or manipulate a small number of observable
quantities that describe the system. This is because simul-
taneously tracking the position and velocity of many atoms
in a system at the same time is very challenging experimen-
tally. Experiments usually do have the luxury of being able
to directly measure quantities associated with longer time
scales of physical interest, e.g. it is sometimes possible to
monitor a protein unfold and refold nearly quasi-statically.23

On the other hand, atomistic simulations provide detailed
descriptions of the dynamics (i.e., monitoring the position
and velocity of every particle is possible) but encounter
computational limitations. Perhaps the most serious being
the small time step size enforced by numerical stability
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considerations. Current simulations can only reasonably
explore ≈O(ns) - O(µs) length trajectories in all-atom MD
simulations of biomolecules17,24 due to the time step
constraint. Rapid advances in experiments and simulations
are likely to further facilitate making comparisons between
these two information sources and using both to refine/
construct surrogate models.25-28

We present surrogate models which can approximate both
simulation29,30 and experimental time series,31,32 but the
focus here is exclusively on simulation data. Throughout,
we refer to quantities monitored in our time series as “system
observables” (SOs). “Pathwise” statistical methods are used
to estimate diffusion models from observed time series. We
use the term “pathwise” simply to refer to situations where
all statistical inference procedures (estimation, hypothesis
tests, etc.) are applied to a single time series. We use all-
atom MD simulations to generate multiple trajectories (i.e.,
a batch of time series). We estimate the parameters of a new
surrogate model for each observed time series as opposed
to aggregating the time series together to estimate the
parameters of a single model. We demonstrate surrogate
models which can account for state-dependent noise. This
has relevance to several systems because it is known that
when a high-dimensional system is summarized with a small
number of SOs, that the noise magnitude often varies as a
function of the SO.3,18,29,30,33-36 The information in the
surrogate diffusion models can also be related to the effective
friction experienced by a particular SO in different portions
of phase space.30,32,37-39 The methods presented make heavy
use of recent developments in statistical testing and
modeling29,30,34,40-44 to assess the validity of the estimated
models and quantitatively learn about the various multiscale
noise sources. For example, we analyze histograms of a root-
mean-square-displacement (rmsd) type SO and determine
how much variability is due to traditional thermal noise and
that introduced by conformational heterogeneity. The former
is usually associated with fast-scale motions whose details
are not of interest and the latter with slow-scale collective
motions.

Besides quantifying the contributions of various noise
sources to the observed variability of the SO, the collection
of estimated models can be also be used to help traditional
physical chemistry computations. For example, they can be
used to reduce the variance of equilibrium statistics and can
also be used to quantify how certain factors influence the
dynamics and stationary distributions of SOs. This is relevant
because it is known that conformational degrees of freedom
often can cause skewed distributions of low-dimensional
SOs. Correlating information accessible in the laboratory with
that in computer simulations has the potential to help in
various computational chemistry tasks.15,31,45-49

Our techniques are demonstrated on short (525 ps)
constrained umbrella sampling trajectories of the enzyme
adenylate kinase.50,51 It is shown that surrogate models,
calibrated from observational data, can be used to predict
and/or refine approximations of stationary distributions
associated with a selected SO. The particular SO studied is
related to known “open” and “closed” crystal structures of
the enzyme.51 We demonstrate that the diffusion coefficient52

can be approximated using the surrogate models and that
confidence bands for this quantity can be constructed using
a single short time trajectory. We demonstrate that these
estimates can be obtained with much less data than traditional
approaches used in MD.24,52,53 We also show that an
experimentally accessible49 slowly evolving conformational
coordinate correlates with the surrogate model parameters.
In this system, taking the state-dependence of the noise
magnitude into account29,30,33,35-37 as well as the underlying
conformational heterogeneity is shown to be important to
faithfully approximate the complex high-dimensional ato-
mistic simulation using low-dimensional surrogate diffusion
models. The Supporting Information provides results dem-
onstrating that the same ideas can be applied to approximate
the SO associated with longer (10-50 ns length) uncon-
strained molecular dynamics of the so-callled “Engrailed
Homeodomain”.54

The article is organized as follows: Section 2 provides a
theoretical background reviewing our basic motivation and
some established results from statistical physics. This
background helps in physically interpreting the information
contained in the collection of surrogate diffusion models we
attempt to fit from observations. This section also presents
the statistical methods we employ and contains a discussion
illustrating how the information extracted from the methods
can help computational physical chemistry. Section 3 pro-
vides the MD simulation details. Section 4 presents the
numerical results and Section 5 concludes.

2. Theoretical Background

2.1. Data-Driven Multiscale Stochastic Modeling. The
basic idea of using “short bursts” of simulation times series
to estimate effective dynamical models motivated the types
of methods we propose.20,55,56 We obtain the parameters of
surrogate diffusion models29,30 from observed time series
using maximum likelihood type (ML) techniques. The type
of modeling we propose would fall under the label of a “data-
driven” modeling procedure. Several other researchers are
developing data-driven methods for describing various
complex systems ranging from molecular dynamics to
weather forecasting.20,29,30,33,56-59 The basic idea behind a
data-driven description is to assimilate information contained
in empirical observations, either simulation or experiment,
coming from a complex high-dimensional system into a
surrogate model.

If accurate surrogate models can be calibrated from short
time series, then these models can be used for a variety of
purposes, e.g. they can be used to simulate sample paths for
longer time intervals than those accessible to the MD
simulation. Other applications are discussed in Section 4.
These basic ideas are not new to chemical physics, and it is
well-known that the multiple time scales associated with the
underlying complex process significantly complicates these
types of tasks.18,21,60 Our main contributions to this type of
endeavor are associated with showing how modern time
series analysis tools can be used to help in quantitatively
determining some “coarse-graining” parameters and also
determine the goodness-of-fit of surrogate models in a
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pathwise fasion. We also demonstrate how a collection of
low-dimensional models can be used to study various all-
atom simulations and single-molecule experiments where
certain collective degrees of freedom are associated with slow
timescalesandinfluencetheestimatedsurrogatemodels.30,31,61,62

The motivation for using a collection of simple low-
dimensional models as opposed to more complicated high-
dimensional models as surrogates is discussed in detail in
ref 61 and in the Conclusions.

2.2. Generalized Langevin Equations. The generalized
Langevin equation (GLE) has been used to describe the
evolution of certain MD trajectories.21 Although we do not
utilize this structure in our models, we introduce it here
because several analogies can be drawn to the modeling
methods we introduce and can aid in the physical interpreta-
tion of our procedure. A generic GLE typically takes the
form

Φ̇)F(Φ)+∫0

t
K(Φ(t- s), s)ds+ √2kBTN(t) (1)

where kBT is Boltzmann’s constant multiplied by the system
temperature, Φ is the vector of SOs the modeler wishes to
dynamically track, a dot above a variable denotes the time
derivative, F( · ) represents the MarkoVian contribution to the
dynamics,19,21 N( · ) represents the “orthogonal noise” coming
from degrees of freedom not explicitly resolved in the
model,19 and K( · , · ) denotes the so-called “memory kernel”.
K( · , · ) is usually interpreted as a non-MarkoVian contribution
to the dynamics. The specific functional form of the memory
kernel and the orthogonal noise can, in principle, be
determined once the full system dynamics are specified using
the Mori-Zwanzig projection operator formalism.19,21 The
orthogonal noise is typically constructed to have a zero mean
over ensembles, and its value depends on the initial condi-
tions of all degrees of freedom in the system. For a single
realization, the orthogonal dynamics can slowly evolve
making the “noise” term appear to be a systematic bias when
viewed over short time scales of a single trajectory. Observa-
tions of this nature motivated the authors in ref 63 to use a
long-memory (fractional Gaussian) process to describe the
orthogonal noise observed in experimental data tracking a
protein’s slow conformational dynamics.

The AdK system studied is also associated with slow
conformational dynamics. However, the surrogate models
we propose attempt to approximate F(Φ) + ∫0

t K(Φ(t - s), s)ds
using a Markovian term µ(Φ) and use a fairly simple noise
process (standard Brownian motion). One of the surrogate
models attempts to utilize the so-called “overdamped ap-
proximation”.38 The term “overdamped” is meant to refer
to the fact that a particle has a position and velocity, but
knowledge of the velocity is not needed to accurately
approximate the statistical properties of the particle position.
This is a temporal coarse-graining procedure commonly used
in statistical physics.18,38 It has been labeled as somewhat
ad hoc because it requires quantitative knowledge of the time
that one needs to wait between adjacent observations for such
an approximation to be valid, and this selection is usually
based on intuitive physical arguments as opposed to precise
mathematical criteria.21 We demonstrate that down-sampling
(or subsampling)30,60 ideas along with statistical hypothesis

tests42,44,64 can be used to help put a quantitative handle on
an overdamped approximation. We refer to fast-scale noise
which may induce short time memory as “fast-scale memory”
throughout the text. Velocity is one possible source, but
others like vibrational motion would contribute to this type
of fast-scale memory. The modeling of slow conformational
degrees of freedom is more subtle. This article focuses on
modeling the output of MD simulations, so producing time
series where a long-memory process of the type given in ref
63 can be estimated is somewhat problematic. This is because
in simulations it is difficult to sample for a large temporal
amount, so the fitted parameters of a long-memory process
would likely contain substantial uncertainty. To approximate
the variability induced by slowly evolving conformational
degrees of freedom in relatively short time series we use a
collection of surrogate models. We expand on this point
throughout the text.

2.3. Time Scale Separation in System Observables. If
the K( · , · ) in eq 1 is zero everywhere and the noise process
is a standard Gaussian white-noise process with “Dirac-delta
time correlation”, then this is commonly written as a diffusion
type stochastic differential equation (SDE).65 SDEs have a
rich history66 in the physical sciences; early studies focused
primarily on analyzing properties of Fokker-Planck type
partial differential equation (PDE) associated with the
stochastic process as opposed to the SDE. We utilize the
SDE view, sometimes called the pathwise view,21 because
we feel it facilitates connecting the physics to the estimated
surrogate models.

The data-driven modeling methods we propose assume that
the effective dynamics21 of the underlying high-dimensional
atomistic simulations can be accurately captured by a small
set of SOs whose dynamics are governed by the following
system of SDEs

dΦ)R(Φ, C)dt+ √2σ(Φ, C )dWt
1

dC) �(Φ, C)dt+ √2κ(Φ, C)dWt
2 (2)

where the Wt
i represent standard Brownian motions,65 Φ

represents a “fast-scale” coordinate, and C represents a
“slow-scale” conformational coordinate. We assume that
observations are made on a time scale shorter than Φ’s
characteristic relaxation time and that the dynamics of C
are associated with much “slower” time scales than those of
Φ. The functions R( · , · ) and �( · , · ) are referred to as the
drift functions, and σ( · , · ) and κ( · , · ) are related to the
diffusion matrix.65

We do not assume that we have the system of SDEs in eq
2 available in closed-form. We only assume that the
stochastic dynamics of the higher-dimensional atomistic
system can be accurately approximated by this system of
SDEs (i.e., evolution rules are more complicated than eq 2).
Recall that the data-driven approach we use attempts to
estimate effective dynamical equations from time series. If
a scale separation exists, the dimension of the SDE system
can often be reduced.21,22,55,66 This can significantly facilitate
estimation of a surrogate model. Traditional SDE model
reduction techniques often ignore the details of the “fast”
component and focus on describing the details of the “slow”
component’s evolution.21,55,67,68 In our notation, the modeler
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would treat Φ as a “noise” and focus on stochastic dynamical
models that explicitly model C. We do the opposite, namely
we estimate a scalar SDE of the form

dΦ) µC (Φ)dt+ √2σC (Φ)dWt
1 (3)

to the SO time series. Recall we assume that our time series
observations are spaced by a time shorter than the relaxation
time of Φ (and hence much shorter than that of C ). If we
additionally assume that the local noise, κ, of the slow
coordinate C is small, then this coordinate will not have
time to appreciably change in a short time simulation. C
can be treated as an effective constant that modulates the
drift and noise functions observed, e.g. µC ( · ) ≡
µ( · , C), σC ( · ) ≡ σ( · , C).

However, a wide range of C are explored, albeit slowly,
at “thermodynamic” equilibrium (i.e. the stationary distribu-
tion). [Note that the underlying system maybe biased, as in
umbrella sampling simulations, but we still refer to the
stationary state as “thermodynamic” equilibrium.] Ideally,
the computational cost associated with a standard long time
integration would be moderate so that observing substantial
changes in both effective fast and slow components would
be possible. In this case, we would attempt to either estimate
the system given in eq 2 directly or use more traditional time
scale separation techniques.21,22,55,67 With longer times series,
we could also entertain using a single more complicated
model63 attempting to capture slow fluctuations and relate
this to a memory kernel. Unfortunately, due to computational
limitations, generating long time trajectories is problematic
in many complex all-atom systems. We propose methods
that estimate a collection of SDEs of the form given in eq
3. The initial conformation of each MD simulation is drawn
randomly from an equilibrium ensemble, so each different
time series trajectory is associated with a different C value.
We demonstrate how to use this collection to assist in
computations commonly encountered in physical chemistry.
Note carefully that the system of SDEs approximating the
dynamics in eq 3 is usually much smaller in dimension than
the full atomistic system. By only modeling one component
(Φ), we are applying an additional reduction to the system
of SDEs. Reduction of this sort introduces the collection of
surrogate model phenomenon we discuss throughout.

Before providing specific details of the assumed surrogate
models, we would like to comment on the process we used
for assigning “fast” and “slow” variables in AdK. In ref 51,
there was interest in generating stationary histograms as-
sociated with a coordinate quantifying the difference in rmsd
of intermediate conformations with respect to the open and
closed enzyme states (in what follows we simply call this
distance “rmsd type”). Dynamically monitoring this rmsd
type quantity in the laboratory is not currently feasible. There
were FRET measurements available providing information
about a distance between dye labeled residues Lys145 and
Ile52.49 These particular residues were chosen since they lie
in two domains of AdK that undergo the largest conforma-
tional change between the open to closed state of AdK and
help detect functionally relevant motion.51 In our simulations
we do not directly attempt to manipulate this residue distance
despite its physical relevance; it has been shown that this

residue distance explores a wide range of values but does
so slowly with respect to the time scale of simulations.51 As
a result we used the rmsd type distance as Φ and the distance
between the center of mass of residues Lys145 and Ile52 as
C. In order to enhance sampling of Φ, a harmonic biasing
potential was introduced (see Section 3). The biasing
potential also made a linear effective force approximation
seem more plausible in a surrogate model (later we quan-
titatively tested this assumption). This biasing potential
altered the effective underlying energy landscape and also
made the dynamics associated with Φ “faster” in relation to
C. Recall we also assumed that the local fluctuation
magnitude associated with C was small. This assumption
was due to the fact that collective conformational degrees
of freedom do not typically wildly fluctuate in an enzyme.

The above considerations clearly utilized our physical
intuition about the system. In general, measurements of fast
Φ type coordinates are difficult to accurately monitor and/
or control in the laboratory. However, several slowly
evolving conformational degrees of freedom can readily be
monitored and/or manipulated by novel single-molecule
techniques.3,5-16 We demonstrate that a measurable correla-
tion exists between the selected SOs. The time scale
separation between the correlated SOs is exploited in the
methods we report. This is one way in which simulation
predictions can be compared to experimental observations.51

However, we would like to note that selecting coordinates
having a large time scale separation can be difficult if
physical intuition alone is used. The problem is even harder
if the interest is in analyzing unconstrained simulations.
General, data-driven procedures for identifying “good”
variables where a significant time scale separation exists is
challenging but would be of great help in studying systems
where physical intuition is lacking.69,70 In addition, other
more sophisticated types of multiscale approximations can
be applied to SDEs like those in eq 2 using less restrictive
assumptions about the dynamics.21,56,68,71

2.4. Proposed Functional Form of Surrogate SDE
Models. For every observed time series, we proposed two
model structures to use along with eq 3, namely

Model 1 : µC (Φ)) (A+B(Φ-Φ0)), σC (Φ))C (4)

Model 2 : µC (Φ)) σC (Φ)2

kBT
(A+B(Φ-Φ0)), σC (Φ))

(C+D(Φ-Φ0)) (5)

where Φ0 corresponds to a user specified point [For example,
this could coincide with the constraint point of an US
simulation51 or the mean value of the observed time series.
We use the latter in this article.], and θ ≡ (A, B, C, D) are
parameters (D is only used in Model 2). Model 1 is known
as the Ornstein-Uhlnebeck (OU) model. The drift function
can readily be interpreted as coming from a harmonic
potential connected to a heat bath whose fluctuations are
independent of the state. Model 2 explicitly utilizes the
overdamped (OD) Langevin approximation18,29,30,38 and also
takes the noise magnitude’s dependence on the current state
into account using a relatively simple model. The estimated
parameters can be interpreted as local approximations of the
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effective force and effective local diffusion coefficient. [Note
that if the dynamics can be approximated by the OD model
above and the noise magnitude is truly constant, then the
parameters of the two different estimated surrogate models
can be directly compared and the difference should only be
due to different sampling uncertainty magnitudes associated
with the parametrization used.]

2.5. Fitting and Testing the Surrogate Models. For
discretely sampled time series, the maximum likelihood
estimator attempts to find the parameter vector maximizing
the logarithm of the joint density associated with the
observations, log(p(Φ0, Φ1,..., ΦN; θ)), where subscripts
denote the time index of the observations. The parameter
yielding this maximum is denoted by θ̂. For general SDEs,
obtaining θ̂ analytically is problematic because the joint
density cannot usually be expressed in closed-form. The OU
model is appealing because it does admit a closed-form
expression for the ML parameter estimate and also yields
some other useful diagnostic information. For example, an
asymptotic expression for the parameter covariance can be
obtained.43 For the case where we cannot obtain the ML
estimate in closed-form, we appeal to approximate likelihood
methods.40,41 Both ML approximation methods previously
cited yielded similar θ̂ values in the cases explored. A url
link to MATLAB scripts illustrating how to obtain θ̂ for both
the OU and OD models given a time series is provided in
the Supporting Information.

The “Q test-statistic” developed in ref 42 is used to check
the validity of the assumed surrogate model. This test is
designed to check for temporal dependencies which are
atypical for an assumed model. We demonstrate that it can
be used to detect if fast-scale memory effects are statistically
significant. The test is also appealing because it applicable
to both stationary and nonstationary signals. This test also
provides us with physically relevant coarse-graining informa-
tion. We demonstrate how we can use this test to determine
the appropriate frequency at which data can be discretely
sampled from a simulation and provide a diffusion model
which is not rejected by a hypothesis test. If one is willing
to make a stationarity assumption about the time series, more
powerful tests can be used.44,64 We demonstrate that the “T3”
test statistic of ref 64 is useful in assessing the accuracy of
a stationary density predicted using a short simulation burst.
This test is shown to have better power than the Q-test.

2.6. Computing the Stationary Density Associated
with Scalar SDEs. Under mild regularity conditions, the
stationary density, denoted by pEQ(Φ; C), associated with a
scalar diffusion model given in eq 3 can be expressed in
closed-form using only information contained in the esti-
mated SDE coefficient functions via the relation72,73

pEQ(Φ;C )) Z

(σC (Φ))2∫ΦREF

Φ
exp(µC (Φ ′ ) ⁄ (σC (Φ ′ ))2)dΦ′

(6)

where Z is a constant used to ensure that the density
integrates to unity, and ΦREF is a specified constant used as
a “reference point”. It is assumed that the diffusion process
obtained by the ML estimate admits a well-behaved station-
ary density. [Technical difficulties can be encountered when

evaluating pEQ(Φ; C) if one allows the diffusion coefficient
to take a zero value (especially relevant to the OD model).
Careful selection of ΦREF along with using a finite support
can help in numerically dealing with this issue. However,
one must be careful to ensure that all regions of non-
negligible probability are accounted for in the finite support.
SDE simulation can be used to assist in this type of task.
Alternatively, one can modify σC to smoothly approach a
minimum value >0 and use an infinite support for pEQ(Φ;
C).] Recall that for each time series, we estimate a new set
of parameters and hence a new SDE of the form given in eq
3. The different trajectories each have unique conformational
state initial conditions (i.e. different C values) in the
underlying detailed atomistic simulations. Each of these
estimated models can be used to compute a “stationary”
density resulting in a collection of “stationary” densities.
Quotes are used in the previous sentence because in each
short times series burst the value of C is effectively fixed
and the Φ coordinate fluctuates about a fixed point. C
determines this fixed point as well as the shape of the
“stationary” density of Φ. The thermodynamic stationary
distribution (≡ ΠEQ) needs to account for the variability
inherent in C. Due to the slow time scale associated with
this coordinate, it is difficult to exhaustively sample phase
space in a single simulation trajectory. If we somehow had
access to a closed-form expression describing the (thermo-
dynamic) probability density of C, denoted by f( · ) [We
simply assume that this density exists and is statistically
independent of the Φ variable. Including dependence on Φ
is in principle possible, but the time scale separation is large
enough to make this coupling fairly weak in the particular
systems studied.], we could integrate this quantity out using

ΠEQ(Φ) : )∫ pEQ(Φ;C )f(C )dC ≈ 1
N

Σ
i)1

N
pi

EQ(Φ;C i) (7)

The right-hand-side of the above represents a Monte Carlo
approximation of the continuous integral to the left. N
represents the number of time series batches used to calibrate
N different surrogate models describing Φ’s dynamics. C i

denotes the temporal average value of C observed in time
series batch i. The subscript i on pi

EQ denotes using the
invariant density obtained for Φ associated with C i (using
eq 6 for each estimated SDE). To more systematically
overcome the conformational sampling barrier, one could
attempt to generate initial conformations utilizing more
sophisticated equilibrium sampling methods.24,53 We dem-
onstrate such sampling strategies are not necessary to obtain
accurate results in the systems studied here but may be useful
in other applications.

Effectively we are modeling the more complex distribution
ΠEQ(Φ) using a mixture of simpler densities. This mixture
modeling can also be given a physical interpretation. The
thermal noise for a fixed value of C induces a certain amount
of variability in the SO of interest; for each single SDE “i”
this can be quantified using pi

EQ(Φ; C i). The variability
induced by conformational heterogeneity can be quantified
by looking at how disjointed a collection of {pi

EQ(Φ; C i)}i)1
N

is relative to the average quantity. [To do so one must have
an estimate of the inherent uncertainty associated with a finite
length discrete time series used to estimate the parameters.]
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2.7. Relation to Computational Chemistry. One interest
in this paper is in approximating the global stationary
histogram associated with a Φ type coordinate using a small
amount of MD time series. Two complications are commonly
encountered: (1) Time correlation in MD trajectories can
complicate constructing reliable estimates due to statistical
dependence,74 and (2) dynamics induced by “orthogonal
coordinates” can induce skewed (non-Gaussian) distributions
in the stationary histogram associated with the fast SO of
interest. Such skewed distributions are commonly encoun-
tered in both experiments and simulations when a low-
dimensional SO is modulated by a diverse population of
conformational degrees of freedom not explicitly included
in the model.46-48

Knowledge of the shape of such global stationary distribu-
tions is important in a variety of applications, e.g. in umbrella
sampling type applications one needs to ensure a high degree
of overlap between adjacent sampling windows,51,74 and
knowledge of the skewed histogram shape can help one in
refining the grids used in such computations. The non-
Gaussian shape of a work histogram is also important in
nonequilibrium free energy computations.30,47 We demon-
strate that our modeling procedures, utilizing a collection of
SDE models, can help in predicting such shapes and treat
the two issues listed in the above paragraph. We also
demonstrate that the time scale separation between the fast-
time scale coordinate Φ and the slow conformational
coordinate C influences kinetic quantities of interest such
as the diffusion coefficient.33,52

3. Simulation Details

We assign Φ ≡ ∆Drmsd (difference in rmsd of the instanta-
neous structures from the reference open and closed crystal
structure of the enzyme) and C ≡ the distance between mass
centers of residues Ile-52 and Lys-145 characterizing the
dynamics of large-scale conformational transitions in AdK
(see ref 51 for details). This distance type SO has also been
measured in solution using single molecule FRET experi-
ments by Henzler-Wildman et al.49

As detailed in ref 51, the initial path between the open
and closed conformations of AdK was generated using the
Nudged Elastic Band (NEB) method.75 Subsequently, 81
configurations obtained from NEB path optimization, sepa-
rated by the interval of 0.2 Å in ∆Drmsd space, were subjected
to US simulations. During these US simulations, production
dynamics of 525 ps at 300 K was performed from each
configuration with a weak restraint of 10 kcal/mol/Å2 in
∆Drmsd (the specified target SO value in each window is
denoted by ∆Drmsd

0 ). No restraints were applied along the
conformational SO, (C). Solvent effects were modeled
implicitly using GBMV approximation76 in CHARMM.77

For further statistical analysis, 50-100 restrained trajec-
tories of 525 ps in length each were performed from the
seven starting conformations along the path corresponding
to the ∆Drmsd

0 values of (measured in Å) -5.79, -3.67,
-0.01, 1.38, 3.30, 5.34, and 7.02. All trajectories were
subjected to similar restraint of 10 kcal/mol/Å2 along ∆Drmsd

but were started with the different initial velocities, assigned
randomly. The time series of ∆Drmsd and distance C were

extracted from the trajectories (sampled every 0.15 ps) and
used in analysis below.

4. Results

4.1. Parameter Estimates and Goodness-of-Fit Tests.
The ML parameters of the OU model were obtained at each
of the 81 different US windows. The measured noise
magnitude (C) depends significantly on the value of Φ. This
is demonstrated in Figure 1. Parameter estimates were
obtained using three different down-sampling (or subsam-
pling) parameters.60 The down-sampling parameter is an
integer represented by “ds”. Knowledge of this parameter is
related to temporal coarse-graining; it determines the amount
of time used to “average out” certain fast-scale non-
Markovian memory effects.18,21,34,56,68,71 To get a better
physical understanding of this quantity, suppose one is
numerically integrating a high-dimensional chaotic deter-
ministic Hamiltonian system using a constant time-step size
δt. The output of a discrete error-free integration would be
the sequence {pi} where pi ≡ -∫iδt

(i+1)δt∇ qH (t)dt (using
notation from classical mechanics). If we attempted to fit a
diffusion approximation directly to the sequence {pi}, it
would likely fail because the fast-scale chaotic motion has
not had sufficient time to “mix” and the noise is not a “white
noise process” (i.e., temporal correlations exist in the fast-
scale noise67). Alternatively, if we used the sequence {pi

ds}
where, pi

ds ≡ - ∫i(ds×δt)
(i+1)(ds×δt)∇ qH(t)dt, the chaotic motion would

have more time to “mix” and would make a diffusion model
more plausible. The surrogate models estimated from our
MD simulations, although inherently stochastic due to the
Langevin thermostat, still exhibit dependence on the down-
sampling because systematic forces associated with fast-scale
memory still need time to average out.

Next we demonstrate how surrogate models calibrating
from short time simulations can be tested for goodness-of-
fit. An US point (∆Drmsd ) 7.02) exhibiting significant state

Figure 1. The C parameter of the Ornstein-Uhlenbeck
process was estimated using short time series from 81
different (independent) US windows. The values estimated
are denoted by symbols, and the purpose of the line con-
necting the points is only to guide the eye. Each parameter
estimate came from a time series containing 350 uniformly
spaced entries. Three different ds values were used. The
corresponding time ∆t between observations is reported in
the legend.
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dependence in the noise was analyzed in detail. At this point,
75 MD trajectories were simulated, and Φ was observed
every 0.15 ps (the interval is much larger than the integration
step-size of 1.5 fs). For every proposed ds, we estimated 75
surrogate model parameter vectors (both OU and OD). A
total of three ds values were tested (ds ) 1, 2, 3). The total
number of time series observations used to estimate each
surrogate parameter vector was fixed to be 350 in each case
so the terminal length of the time series depended on ds;
however, each time series used (regardless of ds) started with
the same initial observations to maximize the degree of
temporal overlap in the Φ time series used in parameter
estimation.

We utilized both the “Q-test statistic”42 and the “T3 test
statistic”.64 It is demonstrated that they both have utility in
regards to our applications. Ideal finite sample null distribu-
tions associated with a time series size of 350 were obtained
using Monte Carlo simulation to generate 1 × 104 samples.
This sample size was assumed large enough to obtain
accurate continuous cumulative distribution function (CDF)
approximation of the null. The relatively small batch size of
MD simulation samples led us to treat the distribution
associated with the test statistics as empirical distribution
functions (EDFs). The reference null distribution and various
EDFs are plotted in Figure 2. We shade the plot to highlight
the critical region associated with a significance level (R) of
10%. The x-intercept of the shaded region is the critical value
associated with this level, and the percentage of rejected
models can be obtained by evaluating the EDF at this value
and subtracting this result from unity. Although we shade
for R ) 10%, the plot can be used to to assess any R of
interest.

Panel (a) of Figure 2 plots the Q-test results testing both
the OD and OU surrogate models using various ds param-
eters. The percentage of test statistics rejected for ds ) 1, 2,
and 3 was roughly 90%, 15%, and 5%, respectively, for the
OD model and was 95%, 10%, and 7.5%, respectively, for

the OU model. This suggests that when simulation data of
the AdK system are discretely observed, the time between
adjacent observations should be g0.30 ps before a “statisti-
cally acceptable” diffusion model can be used. Artifacts of
fast-scale non-Markovian type effects can readily be detected
by the Q-test when one samples more frequently in time than
this value using even fairly small time series (here 350
observations per trajectory). The other US windows analyzed
(not reported) also indicated that ds ) 2 was the appropriate
coarse-graining parameter to use; this corresponded to 0.30
ps between observations. All subsequent results used this
spacing between time series observations. The main utility
of such a pathwise goodness-of-fit analysis is that a very
small number of short sample paths can be used to determine
the time one needs to wait to let fast-scale non-Markovian
effects “average out”.21,71 One of the appealing features of
the Q-test is that the underlying nature of the signal is not
important (stationary or nonstationary cases can be treated),
but for this generality one pays a price in regards to statistical
power. The Q-test performs similarly for the OD and OU
test despite there being fairly large state-dependence at this
point. Later we demonstrate that ignoring this dependence
causes poor predictions related to stationary histogram
estimation. It would be useful if we could apply a more
powerful pathwise test in order to see how well the two
different models perform. The T3 statistic64 makes use of a
stationarity assumption. Panel B reports the results associated
with applying this test. The T3 tests more clearly demonstrates
the OD model fits the observations better (roughly 5% of
the OD models were rejected whereas about 20% of the OU
were using ds ) 2). Results reported in the Supporting
Information show that increasing the time series sample size
to 700 makes rejection easier in both cases, but the OU is
still more strongly rejected at the R ) 10% significance level.

4.2. Diffusion Coefficient Approximation. Approximat-
ing the dynamics with a simple process like the OU model
is appealing because the ML parameter can be obtained

Figure 2. Hypothesis test results. In each panel, the staircase plots correspond to the empirical distribution function (EDF) of
the test statistics obtained from batches of 75 time series (each using different ds values, the corresponding time between
observations, ∆t, are reported in the legend), and the solid curve corresponds to the distribution of the null computed for a finite
sample size of 350 which was the length of each time series analyzed in this plot. The shaded region is used to show the R )
0.10 critical value. The percent of models rejected at this level can be found by noting the point on the x-axis where a color
change occurs (denote by xcrit) and then evaluating 1-EDF(xcrit). Panel (a): The Q-test statistic given in ref 42 was applied to
determine the time needed to wait between observations before diffusion models can be used to accurately approximate simulation
data. The surrogate model parameters were estimated for each path, and then the Q-test statistic was computed using the data
and the estimated model. Panel (b): The T3 test statistic64 computed using the same estimated parameters and data.
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directly (a numerical parameter search is not necessary)43.
In Table 1 we report the mean and standard deviation of C2

estimated with the OU model. The OD and OU model
predictions for this quantity were nearly identical due to the
low state-dependence on the noise, so we focus on the latter.
[We studied a case where the state-dependence on the noise
is mild to facilitate physical interpretation and to compare
to established diffusion coefficient methods used in MD
simulation analysis.24,33,35,36]

Also, if the OU model accurately captures the data, we
can exploit several analytical results for statistical inference
purposes. For example, the large sample asymptotic standard
deviation of C2 can be computed analytically by exploiting
the Gaussian property of this process. Table 1 demonstrates
that our surrogate models can approximate such quantities.
In the atomistic simulation community, the diffusion coef-
ficient is typically determined by using an empirically
measured autocorrelation function to determine the τ where
correlations are small, and then C2 is computed by using
ensemble averaging over temporal blocks.24,33,35,36 The time
requires to wait between observations can be fairly large
when one uses this approach or variants of it.52

Figure 3 plots the autocorrelation (AC) of the detailed MD
samples analyzed in Table 1. The AC of each 525 ps MD

time series was computed for 50 independent MO simula-
tions. The plot contains some sample ACs as well as the
“mean” AC function, i.e. the function obtained by averaging
the AC obtained from 50 MO runs. The 95% confidence
bands for zero correlation are also plotted for the time series
sample size used (dotted lines). The observed autocorrelation
was used to find a relaxation time (τ) by fitting the early
portion to a single exponential via least-squares (resulting
in τ ≈ 15 ps). The diffusion coefficient was then computed
using33,52 〈(Φ(t + τ) - Φ(t))2〉/(2τ) ) 1.27 × 10-3, where
brackets denote ensemble averaging over nonoverlapping
temporal blocks. This number was compared to the effective
diffusion coefficient predicted by the OU model for various ds
values (results reported Table 1). Our models actually exploit
the temporal correlation to get better estimates of such quantities
and do not necessarily require long time series observations.
Recall that a value of ds ) 2 (corresponding to 0.30 ps between
observations) performed fairly well in regards to the Q-test on
all of the data we observed for AdK, and coincidentally this
parameter also appears to most closely capture the diffusion
coefficient computed via traditional ensemble MD methods.52

We also report the mean, predicted uncertainty, and the
measured uncertainty in the estimated C2 for various ds values.
[Note that as one waits a longer time, fast-scale non-Markovian
effects become less important. However in longer time series,
artifacts of the evolution on C type coordinates can more readily
be measured and in this case it appears to increase the effective
diffusion coefficient.]

Note how in Figure 3 one initially observes a roughly
single-exponential decay. This feature allowed us to ap-
proximate the effective diffusion coefficient using a single
time series of length ≈100 ps. With this small amount of
data, we were even able to compute confidence bands which
were fairly accurate. However, closer inspection of the AC
signal at longer times reveals it may be more complex than
an exponential decay. Complex ACs are common in single-
molecule experiments where conformational fluctuations
persist for a relatively long-time.15,16,63 Such artifacts may
limit the predictive power of a diffusion coefficient calibrated
from a scalar SO observed over fairly short time scales. The
diffusion coefficient information reported in Table 1 does
not attempt to account for complex long time behavior. [A
single OU model predicts an AC with a single exponential
rate of decay.]

The bottom panel of Figure 4 demonstrates that the
estimated noise magnitude (Ci) of surrogate model “i”

Table 1. Diffusion Coefficient (D̃) Estimationa

∆t ) 0.15 ps ∆t ) 0.30 ps ∆t ) 0.45 ps

D̃ (N ) 350) 1.0350 × 10-3 1.4387 × 10-3 1.5989 × 10-3

Emp Std. Dev. D̃ 1.1912 × 10-4 1.6584 × 10-4 1.7161 × 10-4

Asymp. Std. Dev.D̃ 1.1136 × 10-4 1.5481 × 10-4 1.7190 × 10-4

D̃ (N ) 700) 1.0237 × 10-3 1.4012 × 10-3 1.5564 × 10-3

Emp Std. Dev. D̃ 9.7924 × 10-5 1.2283 × 10-4 1.3652 × 10-4

Asymp. Std. Dev.D̃ 7.7736 × 10-5 1.0632 × 10-4 1.1810 × 10-4

a The effective diffusion coefficient (in asymptotic mean square diplacement sense) was computed from the MD data at the point ∆D0
rmsd

) 1:38. The valued obtained was 1.27 × 10-3Å2/ps (see text). The diffusion coefficient estimated by the OU models is reported using three
different down-sampling rates. Results using a times series of length N ) 350 and N ) 700 are reported. In each case, results from
analyzing 50 batches of time series are summarized by using the mean and empirically measured standard deviation (“Emp Std. Dev.”) of
the diffusion coefficient estimated surrogate models (each time series gave one estimate). We also report the large sample uncertainty
estimate (“Asymp. Std. Dev.”) of the maximum likelihood estimate. Techniques for approximating this quantity are reported in ref 43.

Figure 3. Autocorrelation (AC) measured from MD data taken
from US point ∆D0

rmsd ) 7.03. The thick line represents the
mean AC function obtained using the full 525 time series and
estimating the AC for each sample path and then averaging
the results. The thin AC labeled as “Path i” are some
representative ACs. The thick dotted horizontal lines cor-
respond to the 95% confidence intervals.
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correlates with Ci. The figure also contains some sample
trajectories demonstrating the time scale separation existing
between Φ and C. Panel A of Figure 4 uses three distinct
(color-coded) symbols to identify the three sample trajectories
plotted in panels B and C. The fast Φ SO oscillates about
the observed temporal mean associated with path i, whereas
the slow C SO exhibits a slow random walk (i.e., not
oscillating about a mean). Given that panel A demonstrates
that the intensity of effective thermal noise varies with C

and C does a random walk through phase space, this
influences the distribution of the SO of interest (Φ). This
plot provides one fairly simple illustration of how a time
scale separation can affect histograms relevant to thermo-
dynamic applications.

The time scale separation can be explored more quanti-
tatively by estimating different stochastic models and analyz-
ing the results. For example, if one estimates the effective
force using the OD model for C and then compares the result
of the same model estimated for Φ, the characteristic time
scale associated with each effective force is roughly quanti-
fied by looking directly at the B parameter. In the SDE
considered, the parameter B corresponds to the linear
sensitivity of the effective force. For the data observed, the
characteristic time scale associated with C ranges from
≈40-100 times the length of that associated with Φ if the
ratio of the linear sensitivities are used to quantify the time
scale gap. [It should also be noted that when a coupled 2-d
model was estimated, the eigenvalues of the effective force
(of the coupled system) indicated a similar separation in time
scales].

4.3. Stationary Histogram Approximation. Finally, we
present results illustrating how a collection of simple models
can be used to obtain stationary histogram information
usually sought in umbrella sampling type applications. We
demonstrate that a collection of surrogate models can account
for variability associated with the slow C time scale. Figure
5 reveals that the collection of OU invariant densities seems
to accurately capture the general shape of ΠEQ. However
the cases at the edges of the US simulation points do not
approximate the shape of the histograms as well. Using a
mixture of OD models remedies the situation in both cases.
[Results for the case near Φ ≈ -6 are given in the
Supporting Information Figure 1.] Figure 6 plots the resulting
density prediction (ΠEQ) along with the measured Φ histo-
gram obtained directly from the MD data. The inset plots
some sample pEQ( · ) functions measured from these models

Figure 4. (a) Scatter plot of the estimated C of the Ornstein-
Uhlenbeck (OU) Model vs 〈C 〉. The data consist of the
estimated OU noise parameter (C) obtained using time series
consisting of uniformly sampled observations spaced by ∆t
) 0.30. The noise parameter was estimated for 50 batches
of short time series, and all US runs used simulations
corresponding to the US constraint point ∆D0

rmsd ) 1:38
plotted against the (temporal) average value of C for the
corresponding ∆Drmsd time series used to estimate the OU
parameters. The linear correlation (r) between the estimated
C and 〈C 〉 was found to be 0.34 and the associated p-value
was 1:0 × 10-3. (b) Representative time series of the “fast”
∆Drmsd coordinate and (c) “slow” C coordinate. The three color
coded trajectories in (b) and (c) correspond to the three color
coded symbols in (a).

Figure 5. The histogram obtained from running MD simula-
tions using 7 different constraint points are reported. Each
data point contains the results from 50 independent simula-
tions run for 105/ps (again uniform sampling with ∆t ) 0.30/
ps). The prediction of the simple OU model which accounts
for the conformational heterogeneity (see text for details) is
shown as a solid line. In most cases this crude approximation
is accurate; the largest discrepancy here is in the left and
rightmost distributions.
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(these are used to construct ΠEQ). The accuracy obtained by
this “mixture of density” plots gives further evidence that a
diverse ensemble of C values modulate the dynamics of Φ.
For points near the boundaries the correlation between C
and Φ is stronger than that shown in Figure 4 (see the
Supporting Information Figure 2), and accounting for this
variability is important if one demands high accuracy in the
surrogate model density estimates (referring to both pEQ( · )
and ΠEQ).

Before concluding, we provide a description which hopes
to show why a “mixture of densities” can help in ap-
proximating the ΠEQ of a SO associated with a complex
molecule. Accurately approximating ΠEQ usually requires
one to exhaustively sample phase space, not just a small
region explored in single short trajectory. The variability
induced by “very fast-degrees” of freedom (e.g., vibrational
degrees of freedom and solvent bombardment) is modeled
in each single surrogate diffusion using Brownian motion.
This along with the drift parameters determines pEQ( · )i which
provides one with quantitative information about how fast-
scale fluctuations cause variability in Φ for a relatively frozen
value of C. Slow time scale conformational variability (e.g.,
that introduced by the distribution of C ) is accounted for
using a collection of surrogate models. In ref 51 it was shown
that the free energy profile of C was effectively flat. It
effectively does a random walk in phase space when viewed
over long time scales, whereas Φ is constrained with a

harmonic potential. The skewed histogram of Φ observed
in the single 525 ps run shown in Figure 6 is an artifact of
this modulating effect.

5. Conclusions

We have demonstrated that a collection of fairly simple
surrogate diffusion models estimated from time series data
can accurately capture dynamical features of short con-
strained AdK simulations. The techniques presented should
be thought of as a “postprocessing” analysis in which
statistical summaries (such as correlation and the invariant
distribution of SOs) are obtained by time series techniques.
In most cases, the parameters of the diffusion models were
modulated by degrees of freedom associated with large-scale
conformational changes. The slow SO monitored in AdK is
experimentally accessible in solution via single molecule
FRET experiments.49 We also demonstrated that pathwise
statistical inference could be used to obtain efficient param-
eter estimates from temporally correlated MD observations.
Application of goodness-of-fit tests helped identify the time
needed to wait (a coarse-graining parameter) before fast-
scale non-Markovian artifacts “averaged out”.

Information extracted from a collection of surrogate diffusion
models can be used to assist free energy computations as well
as obtain kinetic information in the form of effective diffusion
using a relatively short amount of detailed simulation trajectories
in certain situations. Confidence bands and goodness-of-fit tests
can be used to check the quality of the approximation without
requiring a large number of expensive simulations. This
technique shows promise in reducing the computational load
needed to obtain kinetic and thermodynamic properties of
complex biomolecules and may be used to assist established
sampling techniques like WHAM, parallel tempering, or
metadynamics24,74,78 where many histograms need to be ap-
proximated. The findings are not isolated to very short
constrained simulations; the Supporting Information reports
results demonstrating results using longer unconstrained simula-
tions coming from an explicitly solvated protein trajectory
obtained from the dynameomics.org library.26 We also see the
statistical analysis tools presented here as being useful in data-
mining applications.

The surrogate models we appealed to in this article did
not explicitly exploit the structure of any underlying
governing equations. The proposed models had a phe-
nomenological motivation. The collection of estimated
surrogate models did give dynamic and static information
about a Φ type coordinate over a broad range of phase
space not typically explored in a single simulation and
did so using SDE models which we could efficiently
estimate, quantify the uncertainty in our estimates, and
readily interpret in terms of established statistical physics.
We could also assess the goodness-of-fit of the estimated
models in an a posteriori fashion. If simplified models
coming from mathematical model reduction techniques are
available, e.g.,19,71 the parameters of reduced models could
possibly be estimated from observations. One could also
consider attempting to model the dynamics of more SOs
and/or utilize the structure of a generalized Langevin
equation resulting in more complicated surrogate models.

Figure 6. Stationary density estimate focusing on the rightmost
density shown in Figure 5 (corresponding to ∆D0

rmsd ) 7.02).
The result obtained using the Ornstein-Uhlenbeck (OU) sur-
rogate models was poor. A batch of over-damped (OD) models
was estimated from the same times series used to fit the
Ornstein-Uhlenbeck models in Figure 5. The solid lines denote
the invariant density obtained by appealing to eq 7, and the
dotted lines represent the invariant density prediction obtained
by using 〈θ〉 (green corresponds to OU, red, to OD surrogates).
The inset displays some representative invariant density predic-
tions (i.e., “pi

EQ” in eq 7) using thin blue lines. The histogram of
Φ coming from an ensemble of 75 genuine MD time series of
length 525 ps is represented as a bar graph (labeled as MD (75
× 3500)). The jagged line corresponds to the histrogram
obtained from one MD time series of length 525 (labeled as MD
(1 × 3500)).
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The statistical analysis of such models (estimation and
inference) is fairly involved and introduces many new
mathematical challenges, but interesting results are being
obtained in that direction.63 Data-driven modeling is
particularly attractive because recent advances in single-
molecule manipulation methods1-16 are making a variety
of low-dimensional SOs available to dynamically analyze.
Synergystically combining data-driven modeling tech-
niques with new and established simulation methods as
well as mathematical multiscale analysis shows great
promise in providing new insights into complex biological
systems.
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Abstract: The primary and secondary deuterium kinetic isotope effects as well as leaving-group
fluorine kinetic isotope effects have been calculated for the base-promoted elimination of hydrogen
fluoride from 4-fluoro-4-(4′-nitrophenyl)butane-2-one in 75% aqueous methanol solution. The
elimination was studied for both formate and imidazole as the catalytic base; and reactant and
transition state structures and vibrational frequencies have been calculated by including the base
explicitly and by including the solvent by an implicit solvation model that includes both electrostatics
by class IV charges and first-solvation-shell effects by atomic surface tensions. We used the M06-L
density functional for all calculations. The optimized stationary points, the geometry changes along
the solution-phase minimum free energy path, and the solution-phase free energy profile indicate
that the elimination reaction occurs concertedly but asynchronously via an E1cb-like transition state.
Reaction rates were calculated by the equilibrium solvation path method, using variational transition
state theory with multidimensional tunneling. The primary deuterium kinetic isotope effects are
calculated to be large: 1.67 and 5.13 for formate and imidazole, respectively. The corresponding
C4-secondary deuterium kinetic isotope effects are 1.044 and 1.044, and the leaving group fluorine
kinetic isotope effects are respectively 1.020 and 1.015.

Introduction
Enzymes often catalyze proton transfer from the R-carbon
of a carbonyl compound by an E1cB mechanism.1 Shultz et
al. found that such reactions can also be catalyzed by an

antibody elicited against an ammonium-containing hapten;2-4

in particular they found a rate enhancement of a factor of
8.8 (compared to the acetate-promoted reaction) for elimina-
tion of HF from 4-fluoro-4-(4′-nitrophenyl)butane-2-one
(Scheme 1); they found primary H/D kinetic isotope effects
(KIEs) of 3.7 and 2.35 for acetate catalysis and the catalytic
antibody, respectively. These KIEs rule out the E1 mecha-
nism, in which a rate-limiting detachment of the leaving
group precedes a fast proton-transfer step, but the results
are consistent with the rate-limiting proton transfer occurring
via either a concerted E2 or a stepwise E1cB mechanism.
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The study of secondary KIEs for such reactions can provide
better discrimination between E2 and E1cB mechanisms, as
discussed by Saunders5,6 in conjunction with theoretical
fluorine KIEs on model E2 and E1cB elimination reactions.

Based on experimental determinations of primary and
secondary deuterium KIEs, and small fluorine KIEs for a
set of bases with varying pKa strengths (formate, acetate,
and imidazole) in 75% aqueous methanol solution, Ryberg
and Matsson argued that this reaction proceeds via either an
E1cB mechanism (Scheme 2) or E1cB-like E2 mechanism.7

The secondary deuterium KIEs in this study were at position
C4 (atom numbering is illustrated in Figure 1). In the
subsequent work, based on deuteration at C1 and C3 and the
measurement of multiple KIEs, they concluded, based on
double isotopic fractionation8 experiments, that the reaction
proceeds by an E1cB mechanism.9 However their analysis
ignores tunneling and variational effects on the location of
the transition state. In this respect, we note that the position
of the variational transition state of the proton transfer
reaction can be different from that of the deuteron transfer
case, and furthermore multidimensional tunneling prob-
abilities can be sensitive to secondary substitutions. Ryberg
and Matsson’s experimental values of the KIEs for the
formate and imidazole cases are collected in Table 1, and
the present paper will provide theoretical calculations of these
values and of other details of the reaction in order to try to
understand the mechanistic implications of the KIEs.

Reactions involving charge transfer or charged reactants
or products provide an especially difficult challenge to theory
because the effects of solvation can be very large.10-21 Some
of us have recently studied22,23 the ability of electronic
structure theory incorporating an implicit solvent, in par-
ticular the SM5.42/HF/6-31G(d) model,24-28 to make
reliable predictions of carbon, nitrogen, and oxygen KIEs
on the decarboxylation of 4-pyridylacetic acid; however, we
were unable to draw definitive conclusions. In later work it
was demonstrated that several diverse computational levels
cannot theoretically reproduce the experimental KIEs on a
simple SN2 reaction.29-32 Therefore, it is important to carry
out additional studies that allow us to understand the limits
of reliability of theoretical KIEs for organic reactions,
especially those involving polar or charged reagents. The
wealth of experimental data for the title reaction prompts us
to test the applicability of theoretical evaluations of KIEs

for these elimination reactions, and that is the subject of the
present article.

Computational Methods

The first decision to make is the representation of the
potential energy surface. We decided to use density func-
tional theory with an implicit solvation model because that
is a cost efficient choice for reactions of complex molecules.
We chose the M06-L density functional33 because it is the
most accurate available density functional without nonlocal
exchange, and local density functionals are less computa-
tionally expensive than nonlocal ones for large systems. The
present system is large enough that this savings is significant.
Furthermore, we have developed an efficient and reasonably
accurate implicit universal solvation model, called SM8,35

that can be used with this functional in general organic
solvents. Therefore all electronic structure calculations were
carried out with the M06-L density functional and the SM8
solvation model. Furthermore we used the 6-31B(d) basis
set34 because this basis set has slightly more diffuse valence
basis functions than the popular 6-31G(d) basis set, and it
is therefore possibly more accurate for anions, especially for
density functional theory calculations, which are more
sensitive than wave function theory to the inclusion of diffuse

Scheme 1

Scheme 2

Figure 1. Numbering of atoms in the reactant.

Table 1. Experimental KIEs at 311 K

base (Hk/Dk)s
a,b Hk/Dk 18k/19kb

HCOO- 1.038 ( 0.013 3.2 ( 0.1 1.0037 ( 0.0020
(1.009 ( 0.018)

C3H4N2 1.014 ( 0.017 7.5 ( 0.1 1.0013 ( 0.0012
(1.010 ( 0.023)

a Values not in parentheses are secondary deuterium KIE of
hydrogen at C4. b Values in parentheses were obtained for the
reactant perdeuterated in positions 1 and 3.
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basis functions. In the SM8 calcuations, we used the CM4
M charge model,36 which has been shown to be much more
accurate and much more stable than using population analysis
for the solute partial charges. All electronic structure
calculations were carried out using the MN-GFM37 and MN-
GSM38 modules incorporated locally into the Gaussian03
electronic structure program.39

All stationary point geometries were fully optimized in
the reaction field of the implicit solvent. Vibrational analysis
was performed for each stationary point based on analytical
gradients and numerical Hessians. All minima and transition
states (TSs) were confirmed to have zero and one imaginary
frequency, respectively, and Hessians from these calculations
were used for calculations of KIEs by variational40-42

transition state theory. Since experimentally the reaction was
carried out in a binary methanol-water mixture (3:1 v/v), all
the parameters used with the solvation models were inter-
polated linearly from the values for pure solvents. The
resulting dielectric constant equals 44.05. Although the rate
constants are calculated at 311 K, we used solvation
parameters corresponding to 298 K.

We were unable to obtain a stable intermediate structure
as shown in Scheme 2 for reaction involving either base at
the chosen level of electronic structure theory. Every attempt
to locate an intermediate led to C-F bond breaking to
generate 4-(4′-nitrophenyl)butene-2-one and fluoride ion. The
calculations therefore predict a concerted E2 mechanism.
Furthermore, as discussed in more detail below, the con-
ventional transition state has the proton or deuteron partially
transferred with the fluoride bond almost intact. Thus the
mechanism may be labeled as E1cb-like E2.

The reaction rates of the E2 reaction have been calculated
using variational transition state theory40-42 including a
transmission coefficient43-47 that accounts for multidimen-
sional tunneling. The solvation effects were calculated in the
equilibrium solvation path (ESP) approximation,14 and all
rate calculations were carried out by direct dynamics48-50

with the interpolated variational transition state theory by
mapping51 (IVTST-M) algorithm using the Gaussrate52

program, which is an interface of Gaussian0339 and the
Polyrate53 dynamics program.

In the ESP approximation,14 the stationary points along
the minimum free energy path (which we abbreviate, by
analogy to the minimum-energy path for gas-phase reactions,
as MEP) are calculated in the liquid phase. The MEP
corresponds to the path of steepest descent in isoinertial
solute cooordinates on a (3N-6)-dimensional potental of
mean force (where N is the number of atoms in the solute,
that is, the total number of atoms in the saddle point structure)
called V2 or U in ref 14; we will call it U. It is evaluated in
the zero-order canonical mean shape (CMS-0) approxima-
tion.14,47 In this approximation, U is obtained by adding the
gas-phase potential energy of the solute to the standard-state
free energy of solvation, and the saddle point on this solute
free energy surface will be called the conventional transion
state (TS). The signed distance from the TS along the MEP
in isoinertial solute coordinate is called the reaction coor-
dinate s. The variational transition state for a canonical
ensemble at temperature T is located at the position on the

MEP where the standard-state generalized free energy of
activation ∆G(GT, s|T) is a maximum, when ∆G(GT, s|T)
is obtained14,47 by adding the local rovibrational free energy
to U. In the present application the local rovibrational free
energy consists of the local zero-point vibrational energy of
the solute plus the local thermal rotational-vibrational free
energy. All vibrational energies and vibrational free energies
are computed harmonically from solution-phase frequencies.
This yields the canonical variational theory (CVT) rate
constant given by14

kCVT )
kBT

hC°exp[-∆GCVT,0 ⁄ RT] (1)

where kB is the Boltzman constant; h is Planck’s constant;
C° is the concentration (1 molar) corresponding to the
standard state; R is the gas constant; and ∆GCVT,0 is the
standard state free energy of activation, which is the
maximum along s of ∆G(GT, s|T). Conventional transition
state theory for a reaction in solution is not clearly defined
by traditional treatments, but it is defined here as evaluating
the rate constant at the s value that maximizes U(s|T) rather
than the one that maximizes ∆G(GT, s|T); the variational
effect is then defined as the diffference in rate constant due
to the difference in the location of the two maxima. A
reaction is especially susceptible to variational effects when
U(s|T) is rather flat near its maximum, when a reaction is
asymmetric (so that the first derivative of the local rovibra-
tional free energy with respect to s evaluated at the maximum
of U(s|T) is neither zero by symmetry nor small by near
symmetry), or when one is considering higher temperatures
(which increase the importance of entropic effects in U(s|T)
can also contribute to the local rovibrational free energy).
However, these guidelines have their limtations, and one
sometimes finds large variational effects even for symmetric
reactions at low temperature or for reactions with barriers
greater than 10 kcal/mol.

In order to include tunneling, kCVT(T) is multiplied by a
transmission coefficient, κSCT.

kCVT⁄SCT(T)) κ
SCT(T)kCVT(T) (2)

The transmission coefficient is defined as the ratio of the
thermally averaged quantal transmission probability, P(E),
to the thermally averaged classical transmission probability
for the effective vibrationally adiabatic potential energy along
the reaction coordinate.43,47 The effective vibrationally
adiabatic potential energy for the tunneling calculation will
be called Va (it is called V2 in ref 14); Va, like U, is calculated
in the CMS-0 approximation.14,47 In this appproximation,
the one-dimensional Va is equal to U plus the local solute
zero-point energy along the MEP. (This should not be
confused with the one-dimensional generalized free energy
of activation profile.) The centrifugal-dominant small-
curvature semiclassical adiabatic ground state (CD-SCSAG)
tunneling approximation46,54 was used to calculate P(E); this
is called small-curvature tunneling (SCT) for conciseness.

In the IVTST-M algorithm for a solution-phase reaction,
the necessary information (free energies, free energy gradi-
ents, and free energy Hessians) for the CVT/SCT calculation
is computed at a small number of points along the minimum
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energy path and fitted to spline functions under tension. We
use the notation51 IVTST-MsH/G to denote the number of
nonstationary points at which Hessians (H) and free energies
and gradients (G) are calculated. The reaction coordinate for
each of the isotopomers was obtained by the RODS
algorithm.51,56

Results and Discussion

The conventional transition state (TS) structures in solution
for the proton abstraction by formate and imidazole bases
calculated at the SM8/CM4M/M06-L/6-31B(d) level are
illustrated in Figure 2. The imaginary frequencies at the TS
are 896i and 1199i cm-1 for the reactions with formate and
imidazole bases, respectively.

We were able to optimize the intermediate structures
successfully in the absence of solvent but were unable to
optimize them in solution either with or without the bases.
When this was attempted, the C4-F bond was always broken
to generate fluoride ion, which is reasonable since the
solvation energy for a small ion is large in a polar solvent.
This means that the reaction in solution is concerted at the
employed level of electronic structure theory. In terms of
the reaction mechanism, it is important to know whether the
intermediate is present or not, so further studies to cor-
roborate this prediction would be worthwhile. However, if
we assume it is not present, then this reaction becomes an
example of the merging57,58 of the stepwise and concerted
mechanisms by the disappearance of the intermediate.

Geometric parameters and bond orders for stationary points
optimized in the gas phase at the M06-L/6-31B(d) level
and in solution by SM8/CM4M/M06-L/6-31B(d) are given
in Table 2. Table 2 lists bonds that undergo major changes
in the course of the reaction. These include the C3-H and
the O-H (N-H in case of imidazole) bonds, which are
broken and formed, respectively, along with the C4-F bond
that is broken in the reaction and the C3-C4 bond that
becomes a double bond. The corresponding bond orders
calculated by the method of Mayer59 are given in parentheses.
Note that the Mayer bond order is calculated from the
reference Slater determinant of the density functional cal-
culation, and this is preferred to the Pauling bond order,60

which is a function only of distance.
Customarily, the analysis of the position of the TS is

carried out in terms of its synchronicity and looseness. A
transition state is considered synchronous if the bond
breaking is as advanced as bond making61 (often also it is
assumed that the total bond order to the central atom is
preserved62). If the sum of the bond orders to the transferred
atom is diminished or increased, the corresponding transition
state is called loose or tight, respectively.61,63 Table 2 shows
that in the gas phase the bond order sum of the transferred
hydrogen changes from about 0.90 in the reactant to about
0.69 in the intermediate for the formate base reaction and
from 0.90 to 0.73 for the imidazole base reaction. The
average of these values is 0.80 for formate and 0.82 for
imidazole. Table 2 shows that the sum of the hydrogen bond
orders at the TS is 0.68 of formate and 0.72 for imidazole.
Since these are slightly smaller than the averages mentioned
earlier, they indicate a slightly exploded (loose) transition
state for the proton transfer step in the gas phase. The same
is true for the reactions in solution; in particular, the total
bond order at the TS of the imidazole base reaction is only
0.40, which makes it a very loose and polar transition state.

In the gas phase, the reaction mechanism is E1cB, that is,
a two-step mechanism. The first step, from reactants to an

Figure 2. The conventional TS structures for the proton
abstraction by formate and imidazole bases calculated at the
SM8/CM4M/M06-L/6-31B(d) level.

Table 2. Calculated Bond Lengths (Å) and Mayer’s Bond
Orders for Stationary Points in the Gas Phase and in
Solutiona

reactants conventional TS intermediate products

Formate Base
C3-H 1.100/1.100 1.576/1.627 1.787 -

(0.835/0.895) (0.334/0.333) (0.262)
C4-F 1.415/1.392 1.483/1.451 1.456 -

(0.501/0.518) (0.454/0.471) (0.466)
C3-C4 1.512/1.516 1.467/1.467 1.463 1.349/1.348

(0.937/0.943) (1.046/1.043) (1.066) (1.730/1.748)
O-H - 1.123/1.102 1.049 0.983/0.976

(0.336/0.349) (0.426) (0.667/0.706)

Imidazole Base
C3-H 1.100/1.100 1.467/1.748 2.105 -

(0.835/0.895) (0.235/0.355) (0.221)
C4-F 1.415/1.392 1.500/1.400 1.398 -

(0.501/0.518) (0.472/0.472) (0.477)
C3-C4 1.512/1.516 1.469/1.509 1.501 1.349/1.348

(0.937/0.943) (1.038/0.960) (0.985) (1.730/1.748)
N-H - 1.242/1.127 1.055 1.015/1.014

(0.169/0.352) (0.507) (0.672/0.693)

a The gas phase values are in italic, and the numbers in
parentheses are Mayer bond orders.
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intermediate, is rate limiting. The C3-H bond at the
conventional TS of the first step of the formate base reaction
has a bond order of 0.33 in the gas phase, which is 89% of
the way to the intermediate, and the O-H bond has a bond
order of 0.35, which is 82% of its bond order at the
intermediate. This indicates that the TS is very late (product-
like; the product is an intermediate in this case). In solution,
where there is no intermediate, the C3-H and O-H bond
orders at the TS are 0.33 and 0.34, which have changed 60%
and 50%, respectively, of their total change in going all the
way to products. Therefore the TS in solution is nearly
synchronous or slightly late, which is consistent with the
change of C3-H and N/O-H bond lengths between the gas
phase and the solution transition states. In contrast the C3-H
and N-H bond orders at the TS of the imidazole base
reaction are 0.24 and 0.17, which have changed 72% and
25%, respectively, of their total change in going all the way
to products. This analysis of the transition state is most useful
when the bond order is approximately preserved in the course
of the reaction. If the transition state is very loose or tight,
the bond orders for breaking and forming bonds at the TS
are very small or large, respectively. In this case the earliness
and lateness of the TS does not provide such useful
information. Experimentally this analysis of TS character is
performed using the R-secondary H/D kinetic isotope effect,
which often primarily reflects the changes in the force
constant of secondary C-H bonds at the TS. The R-second-
ary H/D KIE may be a better tool to compare the similarity
of the TS with reactants or products than the bond orders of
the hydrogen that is being transferred.

As illustrated by the data collected in Table 3 changes in
partial charges are primarily concentrated in the reacting
fragment of the molecule. The changes in the partial charges
of C2, C3, and O14 from the reactant to the intermediate in
the gas phase show that the intermediate has a fairly large
enolate character, and the partial charges of the TS in the
gas phase are very similar to those of intermediates, which
is consistent with the late (enolate-like) transition state. All
partial charges of the TS in solution are larger than the
corresponding values in the gas phase.

Energetic data for two of the bases are collected in Table
4. For the table, zero of energy is the potential energy of
reactants, that is, 4-fluoro-4-(4′-nitrophenyl)butane-2-one
infinitely separated form bases. The energy differences
between the gas-phase TSs and intermediates are very small,
which is also consistent with the late transition state in the

gas phase. The solvent effect reduces the barrier height of
the imidazole base reaction by about 4 kcal/mol.

The changes in some geometric parameters along the
solution-phase MEP are illustrated in Figures 3 and 4 for
the formate and imidazole base reactions, respectively, where
s is the signed distance along the MEP (with the TS defining
s ) 0) in isoinertial coordinates scaled to a mass of 1 amu.

Table 3. Calculated Partial Atomic CM4M Charges in
Solution and in the Gas Phase at the M06-L/6-31B(d)
Level of Theorya

conventional TS intermediate

atom reactants formate imidazole formate imidazole

C2 0.35(0.28) 0.31(0.21) 0.27(0.17) (0.20) (0.14)
C3 -0.17(-0.15) -0.45(-0.29) -0.31(-0.29) (-0.29) (-0.27)
O14 -0.51(-0.36) -0.58(-0.47) -0.59(-0.50) (-0.48) (-0.52)
F15 -0.25(-0.21) -0.34(-0.30) -0.36(-0.23) (-0.31) (-0.22)
H16 0.14(0.10) 0.30(0.30) 0.33(0.29) (0.30) (0.30)
OF -0.59(-0.59) -0.45(-0.44) - (-0.41) -
NI -0.56(-0.44) - -0.44(-0.36) - (-0.34)

a Numbers in parentheses are for the gas phase. Oxygen (OF)
and nitrogen (NI) atoms are in formate and imidazole, respectively.

Table 4. Energetics of Stationary Points (in kcal/mol)

gas-phase V solution-phase U

base Ra TS Int Rb TS effective barrierc

HCOO- 0 -19.3d -19.4 -92.4 -73.0 19.4c

C3H4N2 0 20.8 19.8 -26.7 -10.2 16.5

a Gas-phase reactants, taken as zero of energy for next
columns. b Solution-phase reactants. c U(TS) - U(R). d In the gas
phase there is an ion-dipole complex between R and TS; the
energy of the TS for HCOO- is lower than that of the reactant but
higher than that of the ion-dipole complex.

Figure 3. Bond distances along the reaction coordinate for
the formate base reaction in solution. The vertical line is at
the conventional TS. Negative and positive s values represent
respectively the reactant side (before transion state) and the
product side (after transition state) of the reaction paths.

Figure 4. Bond distances along the reaction coordinate for
the imidazole base reaction in solution. The vertical line is at
the conventional TS. Negative and positive s values represent
the reactant side and the product side of reaction paths,
respectively.
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As shown in Figure 3, the values of the C3-H and O-H
bond lengths cross before the reaction proceeds to a point at
s ) -0.2 Å. At the TS, the O-H distance is much shorter
than the C3-H distance, which is consistent with the late
transition state in terms of the proton abstraction. Most of
the proton transfer is finished before the point at s ) 0.2 Å
on the reaction path. However the C4-F distance does not
change much in the region of reaction coordinate shown in
Figure 3. The bond distances in the imidazole base reaction,
as illustrated in Figure 4, are changed in a similar way, except
that the point where the C3-H and O-H bond cross is
slightly closer to the TS. Likewise, the transition state is late.
Interestingly, the C-F bond length increases more rapidly
after the proton transfer is almost finished at s ) 0.2 Å. These
results suggest that the elimination of HF from 4-fluoro-4-
(4′-nitrophenyl)butane-2-one occurs asynchronously in a
concerted mechanism, E2, with an E1cB-like transition state.

The proton is transferred first and followed by C-F bond
cleavage without any intermediate. Specific solvent effects
such as hydrogen bonds between solute and hydroxylic
solvent are not considered explicitly in this study although
to some extent they are implicit in the SM8 solvation model,
so further study would be necessary to elucidate their role
in the mechanism.

The generalized free energy of activation profile and the
vibrationally adiabatic energy curves along the reaction
coordinate are illustrated in Figures 5 and 6 for the formate
and imidazole base reactions in solution, respectively. In both
reactions, the free energies on the reactant side (negative s
values) decrease very rapidly as the system leaves the TS,
whereas the product side (positive s values) free energies
are reduced slowly. In addition, the vibrationally adiabatic
energy curve for the elimination by formate is very flat and
wide near its maximum at s ) 0.4 Å. The free energy of
activation profiles at 311 K are qualitatively similar in shape

to the vibrationally adiabatic curves. As a consequence there
is a large variational effect (i.e., a large difference of CVT
from conventional TST) for formate, but the variational effect
for imidazole is less than 3% for any of the isotopomers
studied. For formate the variational transition state is 0.41
Å later than the conventional TS for the all-protium case
and 0.62 Å later than the conventional TS for dideuterium
substitution at C-3. The variational effect lowers the rate
coefficient by a factor of 6.2 for the all-protium case and a
factor of 2.2 for dideuterium substitution at C3. The resulting
primary KIEs are shown in Table 5.

We also calculated the secondary deuterium KIEs and the
primary fluorine KIEs, and these are in Table 6. Again we
see large variational effects for formate. The deuterium KIEs
are in better agreement with experiment (see Table 1) than
are the fluorine KIEs. For example, for formate, the

Figure 5. Potential of mean force and vibrationally adiabatic
effective potential energy along the reaction coordinate of the
HF elimination with formate base calculated by the IVTST-M
method. Both curves in the figure are relative to reactants.
The vertical line is at the conventional TS. Seven nonstation-
ary Hessian (s ) -0.2, -0.1, 0.1, 0.3, 0.4, 0.6, 0.95 Å) and
244 energy and gradient points were used [IVTST-M-7/244].

Figure 6. Potential of mean force and vibrationally adiabatic
effective potential energy along the reaction coordinate of the
HF elimination with imidazole base calculated by the IVTST-M
method. Both curves in the figure are relative to reactants.
The vertical line is at the conventional TS. Eight nonstationary
Hessian (s ) -0.2, -0.1, -0.05, 0.05, 0.1, 0.2, 0.6, 0.95 Å)
and 283 energy and gradient points were used [IVTST-M-8/
283].

Table 5. Calculated Primary H/D KIEs and Ratios of
Transmission Coefficients at 311 Ka

base kTST kCVT κSCT kCVT/SCT

formate 4.60 1.62 1.02 1.67
imidazole 5.29 5.29 0.97 5.13

a Each quantity in the table is the ratio of the values for
all-protium HF elimination to that for dideuterium substitution at C3.
TST denotes conventional TS theory.

Table 6. Secondary KIEs and Ratios of Transmission
Coefficients at 311 K

secondary H/Da 18F/19F

base kTST kCVT κSCT kCVT/SCT kTST kCVT κSCT kCVT/SCT

formate 0.943 1.045 0.999 1.044 1.005 1.021 1.001 1.020
0.943 1.035 0.997 1.046

imidazole 1.012 1.014 1.030 1.044 1.006 1.007 1.008 1.015
1.012 1.012 1.012 1.024

a The upper entry is for D substitution at C4; the lower entry is
for perdeuterated reactants.
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experimental result is 0.4% and the simulation gives 2.0%.
So evidently something is missing in the theoretical descrip-
tion of these reactions. Perhaps there is another step that is
partly rate determining and which does not introduce isotopic
fractionation. What the experimental KIEs would seem to
be telling us is maybe that most rate limiting hydrogen
transfers occur with minor contributions from C-F bond
breaking, but if we accepted that interpretation, then the small
value of the primary deuterium KIE for formate cannot be
explained. So we tentatively base our interpretation mainly
on the larger KIEs.

Matsson and co-workers9 have also provided further
interpretation of the KIEs reported in Table 1. The
secondary KIEs that they determined for the reactant
perdeuterated in positions 1 and 3 are smaller than those
for the isotopomers that have protium at these positions;
they ascribed this to a mechanistic effect, namely the
differences to changes in the commitment on rate constants
k2 and k-1 caused by the deuterium KIEs. In their analysis
they assumed that the first step of the proton transfer does
not exhibit any sizable fluorine KIE. Based on these results
they postulated that the reaction proceeds by the E1cb
mechanism. Our calculated primary H/D KIEs and 18F/
19F KIEs are slightly smaller and larger, respectively, than
the corresponding experimental results. The transmission
coefficients, κSCT, for formate and imidazole promoted
reactions without isotopic substitutions are 1.06 and 3.50
at 311 K, respectively. The small transmission coefficient
for the formate reaction is attributed to the flat effective
vibrationally adiabatic potential curve as shown in Figure
5. The tunneling contribution to the KIE, which is the
ratio of transmission coefficient of the natural isotopomer
to that of the substituted isotopomer, is almost unity for
both reactions. The isotopic substitution does not change
the tunneling coefficient much in these reactions. The
secondary H/D KIEs agree better with experimental
values. Interestingly the quasiclassical secondary H/D
KIEs, which are from the rate constants without tunneling
(that is, from kCVT), become smaller when perdeuterated
reactants are used, which means that the small secondary
KIEs in experiment using the perdeuterated reactants may
not be caused by the change in the commitment of
stepwise processes. The smaller KIEs may be just an
outcome of the zero-point and thermal vibrational energy
changes at the transition state, so they cannot be used as
evidence of the stepwise mechanism. The equilibrium
secondary H/D KIE is 1.20 for both formate and imidazole
promoted reactions. Comparing this value with the qua-
siclassical secondary H/D KIEs implies early transition
states in terms of the force constant change at the C-4
position. Together with our earlier discussion of the
lateness of the transition state in terms of the partial
charges and the C3-H bond distances, we postulate that
the proton transfer and the fluoride dissociation occur very
asynchronously at the level of theory used in this study,
and the TS is very similar to the intermediate of the E1cB
mechanism if it exists.

Comparison of the results of our calculations with the
experimental values led us to a different interpretation

from that of Matsson and co-workers. We conclude that
the results of the secondary deuterium KIEs and the
primary fluorine KIEs indicate that experimentally mea-
sured values correspond directly to the intrinsic KIEs on
the reaction. The dependence of the observed KIEs on
deuteration is in all cases well inside the experimental
errors and cannot therefore be conclusive. Our results are
in agreement with Thibblin and Ahlberg’s64 suggestion
that the secondary leaving group fluorine KIE may also
appear on the deprotonation process in the elimination
reaction; they ascribed this effect to negative ion hyper-
conjugation. This was further supported by Saunders’
calculations65,66 of KIEs of the leaving group. Our
calculations indicate that the bond order of the C4-F bond
decreases from 0.52 to 0.47 for both formate and imidazole
promoted reactions in solution.

The results of the primary deuterium KIEs are also in
agreement with the above interpretation, although the
quantitative accuracy of the theoretical prediction of these
KIEs is lower than of the other two. The size of the primary
deuterium KIEs on proton transfer is considered to be a
measure of the synchronicity of the transition state. The
maximal primary KIE is expected for the most synchronous
transition state,61,67 the situation that occurs when the donor
and the acceptor are of equal pKa. It is interesting to note
that in the present case the dependence is opposite; the
smallest difference in pKa is for the imidazole, which is
characterized by the largest primary deuterium KIE; however,
as mentioned above, the transition state for this reaction is
less synchronous than the other.58 This imbalance deserves
further investigations.

Conclusions

We have used M06-L/6-31B(d) level of electronic structure
theory with the SM8 solvation model, the CM4M charge
model, and CVT/SCT dynamical theory in the equilibrium
solvation path approximation to study KIEs on the base
promoted elimination of HF from 4-fluoro-4-(4′-nitrophenyl)-
butane-2-one. Our results indicate a concerted mechanism
with an E1cB-like transition state and highly asynchronous
processes for the proton transfer and fluoride dissociation.
The tunneling contribution to the KIEs is very small due to
very flat effective adiabatic potential energy curves near the
transition state.
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Abstract: Magnetic interactions in a series of tetranuclear Fe3+ complexes with the butterfly
core structure have been studied with semiempirical ZILSH and density functional theory (DFT)
calculations (B3LYP functional). A theoretical analysis of a previously used method of estimating
exchange constants from a restricted number of spin configurations reveals systematic errors
arising from asymmetry in the complexes, which cause large variations in results with different
choices of spin configurations. Correction factors are derived that yield the correct results obtained
from full configuration space (FCS) calculations. Exchange constants obtained from DFT FCS
calculations for the “body-body” interaction were large and ferromagnetic, in disagreement with
values obtained from empirical fits of magnetic susceptibility data for the complexes, established
magnetostructural correlations in polynuclear Fe3+ complexes, and ZILSH calculations. DFT
calculations also gave unreasonably large antiferromagnetic exchange constants for interaction
between “wingtip” ions that are not directly bridged, again in disagreement with ZILSH
calculations. Estimates of exchange constants for interaction of body and wingtip ions obtained
with ZILSH and DFT were similar, with the ZILSH values in slightly better agreement with
empirical fits. Considering all interactions, the ZILSH method provides results in better accord
with experiment than DFT for these complexes. Additional comparisons of exchange constants
obtained with different spin coupling schemes showed that values appropriate for two-center
spin eigenfunctions gave consistently better results than values calculated with the local spin
operator. The effect of basis set was found to be very small. A brief analysis of these findings
is given.

Introduction

Compounds containing multiple, magnetically coupled open
shell transition metal ions have been intensively studied
because they can display single molecule magnetism.1-9

These so-called “single molecule magnets” (SMMs) have
potential for applications in digital memory storage10 and
quantum computing.11,12 One property crucial for single
molecule magnetism is a large ground-state spin quantum
number, which arises from magnetic interactions between
transition metal ions with unpaired spins. It is thus vitally

important to understand these interactions and the factors
that contribute to them, both to describe them in known
SMMs and (eventually) to facilitate rational design of SMMs
with tailored magnetic properties. Magnetic interactions are
usually characterized with the Heisenberg spin model, in
which the exchange constant JAB describes the strength and
direction of coupling between the spin moments of metal
ions labeled “A” and “B”. From an experimental perspective,
exchange constants are typically found by empirical fitting
of the temperature response of the magnetic susceptibility
of the complex. This becomes difficult as the number of
metal ions (and, hence, number of exchange interactions)
increases, leading to problems with obtaining a unique set
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of fitting parameters and heavy dependence on the initial
parameter values assumed in the fit. There is thus no direct
link between experiment and the underlying conceptual
model for larger complexes.

Quantum chemistry could in principle be used to assess
magnetic interactions between transition metal ions, either
to provide corroboration for empirical fits or to independently
provide estimates of exchange constants in large, asymmetric
complexes. Following early work by Yamaguchi13,14 and
Noodleman,15-17 exchange constants are typically obtained
from theoretical methods by computing the energies of
various spin components of the complex defined by different
relative orientations of the unpaired spins on the metal
centers. These energies are assumed to follow an effective
Heisenberg Hamiltonian, and the exchange constants can be
solved for simultaneously given energies for an appropriate
number of spin components. A number of recent calculations
of this sort have been reported, using either density functional
theory (DFT; refs 18-29) or the ZILSH method of O’Brien
and Davidson.24,30-36 Both methods have shown some
success in these applications but have been systematically
compared for only two complexes.32 Further comparisons
are needed to judge the relative merits of the two methods.
In this paper we present and compare results obtained for a
series of tetranuclear iron compounds with ZILSH and DFT
calculations.

There are two important issues to consider when compar-
ing methods. The first of these is accuracyshow well do
the methods reproduce exchange constants obtained from fits
of magnetic data? Very few direct comparisons of this sort
have been made between ZILSH and DFT calculations.
ZILSH appeared to be more accurate than DFT for the
complex [Fe8O2(OH)12(tacn)6]8+,32 while the opposite was
found for the complex [Mn12(OAc)14(mda)8].

24,29 Cauchy et
al. recently reported results of DFT calculations on the
complexes [Fe4O2(OAc)7 (bpy)2]+ (1), [Fe4O2(O2CPh)7

(phen)2]+ (2), and [Fe4O2(O2CPh)8(phen)2] (3).27 These
complexes all have the well-known “butterfly” structure
(Figure 1), and their magnetic interactions have been
experimentally characterized.37,38 They all have “wingtip-
body” interactions with Jwb ca. -100 cm-1 (see Figure 1)
and central, “body-body” interactions with Jbb ca. -10 cm-1.
Each also has a second-neighbor interaction between wingtip
ions that are not directly bridged. The exchange constant
for this interaction, Jww, was assumed to be zero in fitting
experimental magnetic susceptibility data,37,38 but DFT
calculations indicated these interactions might be significantly
antiferromagnetic (Jww ca. -5 to -10 cm-1).27 Together,
complexes 1-3 provide a sufficient number of independent
exchange constants to allow a thorough comparison of
methods.

The second issue to consider in comparing computa-
tional methods is the size of complex that can be treated.
As size increases calculations become more expensive,
both on a per-calculation basis and in terms of the number
of calculations that must be carried out; the number of
exchange constants increases quadratically with the num-
ber of metal ions in the complex. The ZILSH method is
based on the efficient semiempirical INDO/S method of

Zerner,39-46 so it can be applied to very large complexes.
DFT calculations are much less efficient and become
prohibitive for complexes with greater than ten or so
transition metal ions present. Recourse is often made in
such cases to what could be termed “restricted configu-
ration space” (RCS) calculations, in which exchange
constants assumed to have similar values are made
equivalent and others neglected. This can greatly reduce
the number of exchange constants to be solved for, and
hence the number of spin configurations that must be
considered compared to the standard “full configuration
space” (FCS) approach, but if not done carefully can lead
to systematic errors. Cauchy et al. used an RCS formula-
tion for 1-3 in which all Jwb interactions were assumed
to be equivalent.27 These complexes are small enough that
FCS calculations are readily feasible with DFT, allowing
a comparison between RCS and FCS methods. The results
show that the RCS calculations have systematic errors due
to asymmetry in the Jwb pathways. Results are also
presented for [Fe4O2Cl2(OAc)6(bpy)2] (4), which is less
symmetric than 1-3, and also has been experimentally

Figure 1. (a) Structure of Fe4 butterfly complexes: structural
diagram of [Fe4O2(OAc)7(bpy)2]+ (1). Hydrogen atoms
omitted for clarity. Structure obtained from ref 37. Fe -
magenta; O - red; C - gray; N - blue. (b) Schematic
representation of core structure with labeling scheme for
iron ions and exchange constants. Solid lines represent
exchange pathways mediated by bridging ligands. The
broken line represents nonbridged second-neighbor inter-
action between wingtip ions.
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characterized.47 These calculations further illustrate the
potential pitfalls of using the RCS method.

Methods of Calculation

A. Full Configuration Space (FCS) and Restricted
Configuration Space (RCS) Calculations. The FCS and
RCS methods of obtaining exchange constants from quantum
chemicalcalculationsbothusewavefunctions (orKohn-Sham
single determinants in the case of DFT calculations) for spin
components in which the unpaired spins on certain metal
centers are arranged either “spin-up” or “spin-down” with
respect to those on other metal centers. For wave function
methods (e.g., ZILSH) the electronic Hamiltonian, Ĥ, is
assumed to map onto an effective Hamiltonian of the
Heisenberg spin form

Ĥ) Ĥ0 -∑
A<B

JABŜA · ŜB (1)

where A and B label metal centers with nonzero spins, and
Ĥ0 contains all spin-independent terms in the electronic
Hamiltonian. Taking expectation values of this effective
Hamiltonian for the appropriate number of spin component
wave functions provides a set of equations that can be solved
simultaneously for the unknown parameters E0 and the set
{JAB}

Ei )E0 -∑
A<B

JAB〈 ŜA · ŜB〉 i (2)

where Ei is the energy of the ith component. In the case of
DFT calculations, energies of unrestricted Kohn-Sham
determinants are assumed to also follow eq 2.

The spin coupling expectation values 〈ŜA · ŜB〉 in eq 2 might
be evaluated with an operator such as Davidson’s local spin
operator26,33,48 but often are assigned values assuming formal
local spin quantum numbers of the metal centers (e.g., high
spin Fe3+ ions with five unpaired electrons have SA ) 5/2)
and that pairs of local spins A and B couple to form two-
center spin eigenfunctions. For high spin d5 Fe3+ ions, 〈ŜA · ŜB〉
is then +6.25 for parallel spins A and B or -8.75 for
antiparallel spins. These values are assumed even when the
complex has more than two spin centers and single deter-
minant wave functions are used in the calculations rather
than spin eigenfunctions. The effect of this approximation
is discussed in the next section (Vide infra).

The FCS method uses a number of spin components equal
to the number of unknown parameters obtained by allowing
A and B to run over all metal centers. It involves no
assumptions based on either symmetry (grouping pairwise
exchange constants together into equivalent parameters) or
magnetic interaction strength (neglecting interactions for
metal centers not directly bridged by ligands). The RCS
method does make the preceding assumptionssgroups of
exchange parameters are treated as equivalent parameters,
and/or other exchange constants are assumed to be zero. It
is often used for larger complexes, because the number of
parameters is proportional to the square of the number of
metal centers. The set of calculations required for the FCS
method thus quickly becomes intractable as the number of
metals in the complex increases.

The RCS approach reduces the computational effort
required to treat larger complexes, but this is accomplished
at the risk of neglecting exchange interactions that might be
significant (e.g., second-neighbor interactions). Another more
serious problem that can be encountered is that the exchange
constants might not be invariant to the choice of spin
configurations chosen for the restricted configuration space,
and truncation of the configuration space itself might affect
the parameters that are obtained. The recent DFT study of
tetranuclear Fe3+ complexes by Cauchy et al.37 provides a
good illustration of both the RCS approach itself and its
associated problems. Its development for complexes 1-4 is
summarized here.

Given the exchange constants and numbering scheme of
Figure 1 for Fe4 butterfly complexes, the effective Hamil-
tonian of eq 1 becomes

Ĥeff ) Ĥ0 - JbbŜ1 · Ŝ2 - JwwŜ3 · Ŝ4 - Jwb(Ŝ1 · Ŝ3 + Ŝ1 · Ŝ4 +

Ŝ2 · Ŝ3 + Ŝ2 · Ŝ4) (3)

under the assumption that all Jwb interactions are equivalent.
This leads to the energy expression

Ei )E0 - Jbb〈 Ŝ1 · Ŝ2〉 - Jww〈 Ŝ3 · Ŝ4〉 - Jwb(〈 Ŝ1 · Ŝ3〉 +

〈 Ŝ1 · Ŝ4〉 + 〈 Ŝ2 · Ŝ3〉 + 〈 Ŝ2 · Ŝ4〉) (4)

There are thus four unknowns to be solved for, requiring
wave functions or densities of four spin components.

Cauchy et al.37 used the component with all unpaired spins
aligned (“high spin”, HS), that with the unpaired spins on
Fe4 (see Figure 1) reversed relative to all others, and those
with unpaired spins on Fe2 and Fe4 or Fe3 and Fe4 reversed.
They assumed spin couplings appropriate for two-center spin
eigenfunctions, leading to

EHS )E0 - 6.25Jbb - 6.25Jww - 25Jwb (5)

E4 )E0 - 6.25Jbb + 8.75Jww + 5Jwb (6)

E24 )E0 + 8.75Jbb + 8.75Jww + 5Jwb (7)

The three exchange constants are then found by making
appropriate subtractions of these equations and rearranging
the resulting expressions. For example, subtracting eq 8 from
eq 5 leads to an expression involving only Jwb and the known
energies EHS and E.34 Proceeding similarly for the other
exchange constants, the following equations are obtained:

E34 )E0 - 6.25Jbb - 6.25Jww + 35Jwb (8)

Jwb )
E34 -EHS

60
(9)

Jbb )
E24 -E4

15
(10)

(These expressions were derived with the subtractions
(5)-(8), (6)-(7), and (5)-(6), respectively).

The following development shows that if the wingtip-body
exchange couplings are inequivalent, Jwb obtained from eq
9 is actually the average of the four distinct wingtip-body
couplings J13, J14, J23, and J24 (Jwb). Similarly, Jbb and Jww

obtained from eqs 10 and 11 contain errors arising from
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artificially setting all wingtip-body couplings equal. To
proceed, eqs 5-8 are recast assuming nonequivalent values
for the four wingtip-body interactions, leading to

Jww )
E4 -EHS

15
- 2Jwb )

2E4 -E34 -EHS

30
(11)

EHS )E0 - 6.25J′bb - 6.25J′ww - 6.25(J13 + J14 + J23 + J24)

(12)

E4 )E0 - 6.25J′bb + 8.75J′ww - 6.25(J13 + J23)+
8.75(J14 + J24) (13)

E24 )E0 + 8.75J′bb + 8.75J′ww - 6.25(J13 + J24)+
8.75(J14 + J23) (14)

Making the same subtractions used above to obtain eqs 5-7
leads to

E34 )E0 - 6.25J′bb - 6.25J′ww + 8.75(J13 + J14 + J23 + J24)

(15)

Jwb )
J13 + J14 + J23 + J24

4
) E34 -EHS

60
) Jwb (16)

J′bb )
E24 -E4

15
+ (J24 - J23) (17)

J′ww )
E4 -EHS

15
- (J14 + J24) (18)

Combining eq 17 with eq 10 and eq 18 with eq 11 gives

J′bb ) Jbb + (J24 - J23) (19)

J′ww ) Jww +
J13 + J23 - J14 - J24

2
(20)

These equations clearly show that Jbb and Jww as proposed
by Cauchy et al.37 provide correct estimates of the body-
body and wingtip-wingtip exchange interactions only if the
wingtip-body exchange interactions are equivalent. This is
not the case for complexes 1-4. It should also be pointed
out that experimental determinations of Jbb and Jwb in
butterfly complexes by means of fitting magnetic susceptibil-
ity data have also assumed that all Jwb interactions are
equivalent37,38,47 and thus involve the same approximations
expressed in eqs 16-18.

An additional problem with the RCS method just devel-
oped is that the exchange constants are not invariant to the
choice of spin components used. This is easily illustrated
by considering the component with the spins of Fe2 and Fe3
reversed relative to the others. The energy of this component
assuming equivalent Jwb interactions is

E23 )E0 + 8.75Jbb+8.75Jww + 5Jwb (21)

which is equal to E24 (eq 7) within the RCS model with all
Jwb assumed to be equivalent. Subtracting eq 21 from eq 6
leads to

Jbb )
E23 -E4

15
(22)

Clearly, eqs 22 and 10 will lead to different values of Jbb

unless E23 ) E24, which does not occur in complexes 1-4.

Taking complex 3 as an example, values of Jbb of -15 cm-1

and +7 cm-1 can be obtained from eqs 10 and 22,
respectively (Vide infra). Similar variance is easily demon-
strated for Jww and Jwb as well. This problem with variance
is discussed further in the next section.

B. Computational Methods. ZILSH calculations on
compounds 1-4 were performed as described in ref 33. The
INDO/S method of Zerner39-46 was used to obtain unre-
stricted Hartree-Fock wave functions for the various spin
configurations, and expectation values 〈ŜA · ŜB〉 were computed
from the wave functions with Davidson’s local spin
operator.26,33,48 DFT calculations were performed with the
Gaussian03 program,49 using the B3 exchange functional50

together with the correlation functional of Lee, Yang, and
Parr51 (B3LYP). Two basis sets were employed, either the
all-electron Dunning-Huzinaga double-� basis set for light
atoms52 with the Los Alamos effective core potential plus
double-� valence basis set for iron atoms53 (LANL2DZ; basis
set I) or the all-electron double-� DZVP basis set of Alrichs
for light atoms54 and the all-electron triple-� TZVP basis
set of Alrichs55 for iron atoms (basis set II). Basis set II was
used in ref 27. Spin couplings computed with the ZILSH
method are generally similar to those obtained from DFT
densities25,26,33,48 and were used with DFT energies to obtain
DFT estimates of the exchange constants. Exchange constants
were also computed with all methods assuming spin cou-
plings appropriate for two-center spin eigenfunctions.

Results and Discussion

The goal of this work was to compare FCS and RCS methods
for 1-4 as well as the performance of the ZILSH and DFT
methods with (in the latter case) different basis sets.
Calculations were performed with ZILSH and the B3LYP
functional with basis sets I and II for seven spin components
for all complexes. This allowed for FCS calculations for each
complex and RCS calculations with various choices of spin
components. The spin components used were the component
with all unpaired spins aligned (“high spin”), three compo-
nents with the unpaired spins on Fe1, Fe2, or Fe4 (see Figure
1) reversed relative to all others,56 and three components
each with unpaired spins on two iron ions reversed relative
to all others. The ions with reversed spins in the three cases
were Fe2 and Fe3, Fe2 and Fe4, or Fe3 and Fe4. The ZILSH
calculations followed the procedure described previously32,33

and provided energies, spin densities, and spin couplings
〈ŜA · ŜB〉UHF. The latter were calculated with the semiempirical
implementation33 of Davidson’s local spin operator.26,48 The
DFT calculations also used a previously described proce-
dure25 and provided energies and spin densities.

The results of all calculations are presented in Table 1a.
Relative energies for each spin component computed with
each method are given for each complex in cm-1, along with
the absolute energy in atomic units found for the high spin
component with each method. The latter were provided to
facilitate direct comparisons if other workers seek to repeat
these calculations. Raw data (i.e., absolute energies, spin
couplings) have not often been presented in the literature
on computational studies of exchange interactions in poly-
nuclear complexes, which makes comparative studies like
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the one reported here difficult. The high spin component was
found to have the highest energy with all methods and basis

sets, indicating that exchange interactions in 1-4 are
predominantly antiferromagnetic. This is discussed further

Table 1. Computational Results for Compounds 1-4a

spin componentb

quantity HS 1 2 4 2,3 2,4 3,4

A. [Fe4O2(OAc)7(bpy)2]+ (Compound 1)
E (ZILSH) 4532.2c(-576.33840654)d 2137.0 2135.2 2231.9 2153.0 2043.7 0.0
E (B3LYP/I) 4971.8(-3234.36437118) 2675.5 2670.8 2387.5 2527.3 2548.5 0.0
E (B3LYP/II) 5040.0 (-7794.00462476) 2652.8 2646.9 2426.4 2493.0 2560.8 0.0
M1

e 4.40 (4.27) -4.34(-4.22) 4.41(4.27) 4.37(4.24) 4.37(4.25) 4.37(4.25) 4.34(4.22)
M2 4.40 (4.27) 4.41(4.28) -4.34(-4.22) 4.37(4.24) -4.37(-4.25) -4.37(-4.25) 4.34(4.22)
M3 4.42 (4.25) 4.39(4.22) 4.39(4.22) 4.42(4.25) -4.39(-4.21) 4.38(4.21) -4.35(-4.19)
M4 4.42(4.25) 4.39(4.22) 4.39(4.22) -4.35(-4.19) 4.39(4.21) -4.38(-4.21) -4.35(-4.19)
〈Ŝ1 · Ŝ2〉 f 4.862 -4.769 -4.781 4.781 -4.778 -4.779 4.706
〈Ŝ1 · Ŝ3〉 4.855 -4.742 4.815 4.811 -4.779 4.769 -4.710
〈Ŝ1 · Ŝ4〉 4.855 -4.741 4.817 -4.741 4.770 -4.777 -4.709
〈Ŝ2 · Ŝ3〉 4.855 4.811 -4.744 4.811 4.770 -4.777 -4.709
〈Ŝ2 · Ŝ4〉 4.854 4.810 -4.746 -4.741 -4.778 4.769 -4.710
〈Ŝ3 · Ŝ4〉 4.846 4.781 4.770 -4.769 -4.769 -4.767 4.696

B. [Fe4O2(O2CPh)7(phen)2]+ (Compound 2)
E (ZILSH) 4846.0c(-824.53737107)d 2208.1 2244.4 2323.0 2168.0 2217.0 0.0
E (B3LYP/I) 5229.4(-4727.58896405) 2686.5 2828.4 2495.9 2674.4 2534.3 0.0
E (B3LYP/II) 5291.4(-9286.34739508) 2665.4 2807.6 2530.5 2688.7 2502.7 0.0
M1

e 4.41(4.27) -4.33(-4.21) 4.41(4.27) 4.37(4.24) 4.37(4.24) 4.37(4.24) 4.34(4.21)
M2 4.40(4.27) 4.40(4.27) -4.33(-4.21) 4.37(4.24) -4.36(-4.24) -4.37(-4.24) 4.34(4.21)
M3 4.41(4.24) 4.37(4.21) 4.37(4.21) 4.41(4.24) -4.37(-4.21) 4.37(4.20) -4.34(-4.18)
M4 4.41(4.24) 4.37(4.21) 4.37(4.21) -4.33(-4.18) 4.37(4.21) -4.37(-4.21) -4.33(-4.18)
〈Ŝ1 · Ŝ2〉 f 4.833 -4.726 -4.714 4.788 -4.759 -4.688 4.744
〈Ŝ1 · Ŝ3〉 4.835 -4.743 4.791 4.742 -4.741 4.668 -4.739
〈Ŝ1 · Ŝ4〉 4.825 -4.725 4.746 -4.718 4.752 -4.687 -4.758
〈Ŝ2 · Ŝ3〉 4.846 4.795 -4.763 4.786 4.745 -4.683 -4.750
〈Ŝ2 · Ŝ4〉 4.836 4.768 -4.720 -4.760 -4.761 4.687 -4.760
〈Ŝ3 · Ŝ4〉 4.840 4.794 4.797 -4.716 -4.755 -4.684 4.748

C. [Fe4O2(O2CPh)8(phen)2] (Compound 3)
E (ZILSH) 4461.1c(-894.32489930)d 2007.0 2006.9 2192.6 1830.0 2097.2 0.0
E (B3LYP/I) 5177.0 (-5148.94449971) 2586.8 2586.8 2482.1 2608.8 2276.1 0.0
E (B3LYP/II) 5163.2(-9707.54851198) 2553.0 2553.0 2481.0 2591.8 2252.3 0.0
M1

e 4.43(4.28) -4.36(-4.22) 4.43(4.28) 4.40(4.25) 4.39(4.25) 4.40(4.25) 4.37(4.22)
M2 4.43(4.28) 4.43(4.28) -4.36(-4.22) 4.40(4.25) -4.39(-4.25) -4.40(-4.25) 4.37(4.22)
M3 4.45(4.25) 4.41(4.22) 4.41(4.22) 4.45(4.25) -4.41(-4.21) 4.41(4.21) -4.37(-4.19)
M4 4.45(4.25) 4.41(4.22) 4.41(4.22) -4.37(-4.19) 4.41(4.21) -4.41(-4.21) -4.37(-4.19)
〈Ŝ1 · Ŝ2〉 f 4.904 -4.788 -4.787 4.866 -4.754 -4.823 4.819
〈Ŝ1 · Ŝ3〉 4.903 -4.792 4.857 4.862 -4.755 4.815 -4.827
〈Ŝ1 · Ŝ4〉 4.910 -4.827 4.827 -4.827 4.750 -4.823 -4.825
〈Ŝ2 · Ŝ3〉 4.896 4.819 -4.816 4.819 4.744 -4.813 -4.818
〈Ŝ2 · Ŝ4〉 4.903 4.862 -4.789 -4.792 -4.755 4.815 -4.827
〈Ŝ3 · Ŝ4〉 4.904 4.866 4.859 -4.788 -4.754 -4.823 4.819

spin componentb

quantity HS 2 3g 4 2,3 2,4 3,4

[Fe4O2Cl2(OAc)6(bpy)2] (Compound 4)
E (ZILSH) 3815.2c(-559.84589131)d 1401.5 1665.3 2104.6 1557.6 1842.3 0.0
E (B3LYP/I) 4898.3(-3035.99026836) 2271.5 2216.0 2467.7 2309.2 2511.2 0.0
E (B3LYP/II) 4934.4(-8485.97744006) 2221.8 2215.7 2515.9 2296.8 2465.3 0.0
M1

e 4.43(4.24) 4.43(4.24) 4.39(4.21) 4.40(4.21) 4.38(4.24) 4.38(4.24) 4.36(4.19)
M2 4.41(4.27) -4.34(-4.21) 4.38(4.24) 4.38(4.24) -4.40(-4.21) -4.39(-4.21) 4.34(4.21)
M3 4.42(4.23) 4.38(4.19) -4.35(-4.16) 4.42(4.22) -4.38(-4.19) 4.39(4.19) -4.35(-4.17)
M4 4.37(4.19) 4.34(4.16) 4.37(4.19) -4.32(-4.14) 4.35(4.17) -4.34(-4.16) 4.32(-4.14)
〈Ŝ1 · Ŝ2〉 f 4.882 -4.770 4.833 4.848 -4.807 -4.739 4.799
〈Ŝ1 · Ŝ3〉 4.884 4.801 -4.800 4.812 -4.802 4.730 -4.807
〈Ŝ1 · Ŝ4〉 4.844 4.802 4.804 -4.758 4.762 -4.718 -4.789
〈Ŝ2 · Ŝ3〉 4.856 -4.749 -4.737 4.816 4.777 -4.712 -4.774
〈Ŝ2 · Ŝ4〉 4.816 -4.740 4.737 -4.758 -4.745 4.685 -4.749
〈Ŝ3 · Ŝ4〉 4.820 4.778 -4.707 -4.730 -4.747 -4.691 4.750

a See text for descriptions of methods and basis sets. b Indices indicate metals with unpaired spins reversed to all other unpaired
spins. See Figure 1 for numbering scheme. “HS” indicates component with all unpaired spins aligned. c Relative energy (cm-1).
d Absolute energy of HS component (a.u.). e z component of spin for Fe1 computed from ZILSH component wave function. Values in
parentheses obtained from B3LYP/II component density. f Spin coupling between Fe1 and Fe2 computed from ZILSH component wave
function. g This choice of spin components (i.e., using that with spin of Fe3 reversed instead of that with Fe1 reversed) was adopted
for 4 for consistent atom labeling with ref 33. The exchange constants obtained with FCS calculations and RCS eqs 9-11 are invariant
to this choice.
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below in reference to exchange constants obtained from FCS
and RCS calculations. The component with unpaired spins
on Fe3 and Fe4 reversed relative to the unpaired spins on
Fe1 and Fe2 (see Figure 1) was found to have the lowest
energy with all methods and basis sets, in accord with
previous experimental37,38,47 and theoretical27,33 studies of
these Fe4 butterfly complexes.

Local spin densities computed for the iron ions from
ZILSH wave functions with the Löwdin scheme57 are given
in Table 1a, along with those found from DFT Kohn-Sham
determinants (basis set II) with the Mulliken scheme.58 The
local spin density of an ion is approximately equal to the
number of unpaired electrons associated with that ion.33 All
values found with ZILSH are ca. 4.40 in magnitude, close
to the formal value of five expected for high spin d5 Fe3+

ions. The values given in Table 1b are reduced below five
by spin delocalization and are similar to values obtained with
ZILSH for other complexes of Fe3+ ions.32,33,35,36 Values
obtained with DFT calculations are similar to the ZILSH
values and resemble those reported for similar calculations.20,27

The signs of the local spin densities indicate the relative
directions of spin moments of the iron ions and demonstrate
that correct spin distributions were obtained for each spin
component with all methods and basis sets.

Spin couplings 〈 ŜA · ŜB〉UHF found from ZILSH wave
functions with the local spin operator26,33,48 (Table 1c) took
on values close to (5, similar to those obtained from ZILSH
calculations on other polynuclear Fe3+ complexes.32,33,35,36

One goal of this work is to compare exchange constants
obtained in two ways, using spin couplings properly calcu-
lated as expectation values of the local spin operator or using
spin couplings appropriate for two-center spin eigenfunctions.
Values for the latter case for each spin component are given
by replacing positive values of 〈 ŜA · ŜB〉UHF in Table 1a with
+6.25 and negative values with -8.75. Both choices of spin
couplings are used with the energies in Table 1d to compute
exchange constants with the FCS method and the RCS
method with various sets of spin components. The results
are presented and discussed in the following subsections.

A. Comparison of FCS and RCS Methods. Exchange
constants obtained with FCS calculations and the RCS
method of ref 27 (eqs 9-11) are compared in this subsection.

Discussion is limited to results found with energies from
B3LYP/II calculations and 〈ŜA · ŜB〉 appropriate for two-center
spin eigenfunctions. This allows direct comparison with
previously reported results for compounds 1-3.27 Analogous
conclusions would be reached based on results obtained from
ZILSH or B3LYP/I calculations and either choice of spin
couplings. Exchange constants Jbb, Jww, and Jwb obtained
from the data of Table 1a with eqs 9-11 are given in Table
2 for compounds 1-4, along with those reported previously
for 1-3.27 Values obtained with the correction factors of
eqs 19 and 20 are also given as well as those found from
FCS calculations with the same choice of method, basis set,
and spin couplings.

A comparison of exchange constants obtained in this work
with those reported previously for compounds 1-327 shows
very similar results: Jbb and Jww agree within 1 cm-1, and
Jwb, which is much larger in magnitude, agrees within 4
cm-1 (ca. 5%) for every complex. Though direct comparisons
are difficult because no raw data were given in ref 27, the
small discrepancies likely arise from different methods used
for obtaining starting orbitals. We used the procedure
described in ref 25, which uses standard starting guesses from
the G03 program,49 while Cauchy et al.27 used starting
guesses from the Jaguar 6.0 program.59 Additionally, we used
the standard G03 SCF algorithm, while they used the
quadratically convergent algorithm. The SCF convergence
threshold might also play a role. We assumed a threshold of
10-8 a.u., compared to the standard threshold of 10-4 a.u.
employed by the G03 program. The latter threshold corre-
sponds to ca. 20 cm-1, which is on the same order of
magnitude as the exchange constants themselves. Again it
is difficult to judge whether convergence criteria play a role
in the discrepancies in computed exchange constants, as
Cauchy et al. did not state the threshold they used in ref 27.
Regardless of specific causes for the discrepancies, it is clear
that the results found in the present work are substantially
the same as those reported by Cauchy et al.

A comparison of exchange constants obtained for com-
pounds 1-4 with RCS and FCS calculations (Table 2) shows
that there are discrepancies in the values obtained for Jbb

and Jww, as anticipated from eqs 19 and 20. These discrep-
ancies are small for 1, which is the least asymmetric complex

Table 2. Exchange Constants Obtained for 1-4 with RCS Calculationsa Using B3LYP/II Energies and Spin Couplings for
Two-Center Spin Eigenfunctionsb,c

complex interactiond FCS RCSe RCS, correctedf

[Fe4O2(OAc)7(bpy)2]+ (1) Jbb ) J12 +8.7 +9.0 (+8.3) +8.7
Jww ) J34 -8.2 -6.2 (-5.8) -8.2
Jwb -84.0 -84.0 (-80.0) -84.0

[Fe4O2(O2CPh)7(phen)2]+ (2) Jbb ) J12 +6.1 -1.9 (-0.9) +6.1
Jww ) J34 -9.4 -7.7 (-7.2) -9.4
Jwb -88.2 -88.2 (-84.2) -88.2

[Fe4O2(O2CPh)8(phen)2] (3) Jbb ) J12 -1.9 -15.2 (-15.2) -1.9
Jww ) J4 -8.7 -6.7 (-6.3) -8.7
Jwb -86.1 -86.1 (-82.8) -86.1

[Fe4O2Cl2(OAc)6(bpy)2] (4) Jbb ) J12 +1.0 -3.4 +1.0
Jww ) J34 -6.8 +3.2 -6.8
Jwb -82.2 -82.2 -82.2

a Equations 9-11. b The appropriate value for each spin coupling can be obtained from Table 1 by replacing all positive spin couplings
with +6.25 and all negative spin couplings with -8.75. c All values in cm-1. d See Figure 1 for labeling scheme. e Values in parentheses
from ref 27. f Equations 16, 19, and 20.
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and thus most closely reflects the approximation that all
body-wingtip exchange couplings are equal. The discrepan-
cies are larger for the less symmetric compounds, as large
as 13.2 cm-1 in magnitude for Jbb of 3. The sign of Jbb

obtained for 2 from the RCS calculations is opposite that
found with FCS calculations. The trend in Jbb and Jww found
with RCS calculations is reversed compared to that found
with FCS calculations for 3. In the case of 4, the least
symmetric compound in the set, the signs of both Jbb and
Jww found with RCS calculations are reversed relative to those
found with FCS calculations, again leading to opposite trends.
It is important to note that applying the correction factors of
eqs 19 and 20 to Jbb and Jww obtained from the RCS
calculations leads to the FCS values in every case.60 This is
a clear demonstration that the RCS method does a poor job
of recovering the FCS results for the less symmetric
compounds.

An additional problem with the RCS method is that the
exchange constants obtained are not invariant to the choice
of spin components used, as discussed above. Seven spin
components are needed for FCS calculations, while only four
are needed for RCS calculations. Given energies and spin
couplings for seven spin components in Table 1b, thirty-
five different choices of four components can be made for
RCS calculations. In some of these cases, the result of
simultaneous solution of equations similar to eqs 9-11 is
indeterminate. This is easily seen when the equations are
cast into matrix form to occur when two rows in the square
matrix containing the spin couplings are identical. In other
cases this does not occur, and a solution for Jbb, Jww, and Jwb

is obtained. The crucial point is that these solutions are not
the same for different choices of spin components. This is
shown in Table 3, which reports limiting values of the
exchange constants found for each complex with RCS
calculations on all possible choices of four spin components
from Table 1a. The results in Table 3 were found using
B3LYP/II energies and spin couplings appropriate for two-
center spin eigenfunctions; again, similar conclusions would
be reached with other choices of method, basis set, and spin
coupling scheme. Large variations were found with different
choices of spin components used in the RCS calculations,
as large as ∼32 cm-1 for Jbb and Jww of compound 4,
compared to FCS values of +1 cm-1 and -7 cm-1,
respectively. Again the variations are smallest for 1, the most
symmetric of the four compounds, but even in this case are

of substantial size compared to the FCS parameters (e.g., a
variation of 5.0 cm-1 in magnitude for Jww, compared to the
FCS magnitude of 8.2 cm-1). From these results it is clear
that exchange constants obtained from one particular choice
of spin components are of limited validity.

A very important point in this regard is that despite the
large variations in the RCS exchange constants found with
different choices of spin components, the FCS values are
obtained for all sets of spin components when correction
terms analogous to those given in eqs 19 and 20 are applied.
This is shown in Table 4, which presents RCS equations
and correction factors for four different choices of spin
components for compound 3. Exchange constants obtained
using B3LYP/II energies and spin couplings appropriate for
two-center spin eigenfunctions are given as well, along with
corrected values and values obtained from FCS calculations.
From the RCS calculations Jbb ranges from -15.2 cm-1 to
+7.4 cm-1, Jww ranges from -20.0 cm-1 to +2.6 cm-1, and
Jwb ranges from -92.7 cm-1 to -81.4 cm-1. Even so,
applying the correction factors leads exactly to the FCS result
in every case. This is a convincing demonstration that FCS
calculations must be used to obtain a true measure of the
performance of a particular method of calculation. In other
words, comparisons between various computational methods,
and between computational results and experiment, must be
made on the basis of FCS calculations if they are to have
any validity. This is done for compounds 1-4 in the
following subsection.

B. Comparisons between Methods and Experiment
(FCS Calculations). Exchange constants obtained for 1-4
with FCS calculations using different methods, basis sets,
and spin coupling schemes are presented in Table 5. They
are compared with exchange constants fit to reproduce
experimental magnetic susceptibility data37,38,47 in this
section, with the goal of judging which method provides the
most accurate picture of magnetic interactions in the
complexes. Two general trends that are independent of basis
set of spin coupling scheme are immediately apparent in
Table 5. First, the body-body interactions Jbb found with DFT
are uniformly ferromagnetic, while those found with ZILSH
are antiferromagnetic. Fits of magnetic susceptibility data
for each complex found Jbb to be antiferromagnetic,37,38,47

in better agreement with the ZILSH calculations. It is,
however, important to consider that the quality of the fits is
relatively insensitive to the value of Jbb. In the case of 1, for
example, it was found that Jbb was “more positive than -15
cm-1” and likely antiferromagnetic.37 The experimental
results are thus not definitive for these complexes regarding
the sign of Jbb. Even so, the Jbb values from DFT calculations
for 1-4 are very ferromagnetic, with magnitudes as large
as +22 cm-1 for 1 found with B3LYP/I energies and
〈 ŜA · ŜB〉UHF values from Table 1a. Such large ferromagnetic
interactions are at odds with virtually all salient interpreta-
tions of experimental magnetic fata for polynuclear Fe3+

complexes, including correlations between exchange con-
stants and geometric parameters in bridging pathways and
exchange constants extracted from experimental data for
diferric complexes. These are discussed in turn below.

Table 3. Limiting Values of Exchange Constants Obtained
with RCS Calculations (B3LYP/II) on All Possible Choices
of Spin Configurations for Compounds 1-4a

compound 1 2 3 4

Jbb (max) +9.0 +10.8 +7.4 +16.6
Jbb (min) +4.4 -1.9 -15.2 -16.4
Jbb (FCS) +8.7 +6.1 -1.9 +1.0
Jww (max) -5.7 +1.6 +2.6 +16.2
Jww (min) -10.7 -20.3 -20.1 -16.8
Jww (FCS) -8.2 -9.4 -8.7 -6.8
Jwb (max) -81.8 -81.9 -79.4 -65.7
Jwb (min) -86.2 -94.5 -92.7 -98.7
Jwb (FCS) -84.0 -88.2 -86.1 -82.2

a All values in cm-1. See Figure 1 for labeling scheme for
exchange constants.
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Considering first correlations between structural parameters
and exchange constants, empirical magnetostructural cor-
relations have been found for both diferric and higher
nuclearity Fe3+ complexes with substituted and unsubstituted
oxo bridging ligands.36,61-63 The number of distinct bridging
pathways considered in these works is quite large, on the
order of 85. In all cases, the exchange constant was found
to become more antiferromagnetic with decreasing average
Fe-O bond distance in the coupling pathway. A dependence
on Fe-O-Fe bridging angle was also found,36,61,62 with the
exchange constant becoming more antiferromagnetic with
increasing angle. This dependence was especially marked

for higher nuclearity complexes36 but was weaker than the
dependence on bond distance in all cases. Although different
fitting parameters for the magnetostructural correlation
equations were found depending on the complexes consid-
ered (i.e., dinuclear or higher nuclearity, substituted vs
unsubstituted oxo bridged or both considered together), all
of these models predict antiferromagnetic Jbb values given
the geometric parameters of the body-body pathways in 1-4.
The correlation of Cañada-Vilalta et al.36 is perhaps most
applicable for 1-4 since it was based on interactions in
polynuclear complexes with O2--mediated exchange interac-
tions as small as -8 cm-1, and it gives estimates of Jbb in

Table 4. RCS Equations and Exchange Constants Found for Compound 3 (B3LYP/II) for Several Choices of Spin
Configurationsa

configurationsb RCS correction J RCS J RCS, corrected

HS, 4, 24, 34 Jbb ) (E24-E4)/15 J′bb ) Jbb + J24 - J23 -15.2 -1.9 (-1.9)c

Jww ) (2E4-EHS-E34)/30 J′ww ) Jww + 1/2(J13 + J23 - J14 - J24) -6.7 -8.7 (-8.7)
Jwb ) (E34 - EHS)/60 Jwb ) Jwb -86.1 -86.1 (-86.1)

HS, 2, 4, 23 Jbb ) (E23 - E4)/15 J′bb ) Jbb + J14 - J13 +7.4 -1.9
Jww ) (E23 - E2/)15 J′ww ) Jww + J23 - J13 +2.6 -8.7
Jwb ) (E2 + E4 - E23 - EHS)/30 Jwb ) 1/2(Jwb + J13) -90.7 -86.1

2, 4, 24, 34 Jbb ) (E24 - E4)/15 J′bb ) Jbb + J24 - J23 -15.2 -1.9
Jww ) (E24 - E2)/15 J′ww ) Jww + J24 - J14 -20.0 -8.7
Jwb ) (E24 + E34 - E2 - E4)/30 Jwb ) 1/2(Jwb + J24) -92.7 -86.1

1, 4, 23, 34 Jbb ) (E23-E4)/15 J′bb ) Jbb + J14 - J13 +7.4 -1.9
Jww ) (E23-E1)/15 J′ww ) Jww + J14 - J24 +2.6 -8.7
Jwb ) (E23 + E34 - E1 -E4)/30 Jwb ) 1/2(Jwb + J14) -81.4 -86.1

a All values are given in cm-1 and were obtained assuming spin couplings appropriate for two-center spin eigenfunctions. The appropriate
value for each spin coupling can be obtained from Table 1 by replacing all positive spin couplings with +6.25 and all negative spin
couplings with -8.75. b Indices indicate metals with unpaired spins reversed to all other unpaired spins. See Figure 1 for numbering
scheme. “HS” indicates component with all unpaired spins aligned. c Values obtained from FCS calculations.

Table 5. Exchange Constants Obtained for 1-4 with FCS Calculations Using Energies and Spin Couplings Given in Table
1aa

complex interactionb ZILSH B3LYP/I B3LYP/II expc

[Fe4O2(OAc)7(bpy)2]+ (1) Jbb ) J12 -11.7 (-8.7)d +21.6 (+12.5) +15.6 (+8.7) -17.8
Jww ) J34 -2.0 (-2.5) -12.0 (-9.0) -10.7 (-8.2) -
Jwb ) J13 -115.6 (-73.8) -132.3 (-84.4) -134.9 (-86.0) -
J14 -121.1 (-77.2) -127.4 (-81.2) -128.3 (-81.8) -
J23 -121.5 (-73.6) -131.5 (-83.8) -131.6 (-83.9) -
J24 -115.5 (-73.6) -128.8 (-82.1) -132.2 (-84.3) -
Jwb -118.4 (-75.5) -130.0 (-82.9) -131.8 (-84.0) -91.0

[Fe4O2(O2CPh)7(phen)2]+ (2) Jbb ) J12 -19.5 (-13.1) +16.4 (+9.5) +10.9 (+6.1) -2.4
Jww ) J34 -2.4 (-2.2) -14.9 (-10.2) -13.7 (-9.4) -
Jwb ) J13 -125.4 (-80.0) -138.6 (-88.3) -138.6 (-88.3) -
J14 -129.4 (-82.8) -141.9 (-90.7) -145.2 (-92.8) -
J23 -120.7 (-77.1) -138.2 (-88.3) -140.6 (-89.8) -
J24 -129.8 (-83.2) -126.8 (-81.3) -127.6 (-81.9) -
Jwb -126.3 (-80.8) -136.4 (-87.2) -138.0 (-88.2) -77.6

[Fe4O2(O2CPh)8(phen)2] (3) Jbb ) J12 -22.2 (-14.9) +1.1 (-0.1) -1.7 (-1.9) -15.6
Jww ) J34 -3.6 (-2.9) -13.8 (-9.6) -12.4 (-8.7) -
Jwb ) J13 -121.9 (-79.0) -126.3 (-82.0) -125.4 (-81.4) -
J14 -107.2 (-69.7) -139.6 (-90.6) -139.8 (-90.7) -
J23 -108.0 (-70.1) -143.9 (-93.1) -143.3 (-92.7) -
J24 -121.3 (-78.6) -122.3 (-79.5) -122.2 (-79.4) -
Jwb -114.6 (-74.4) -133.0 (-86.3) -132.7 (-86.1) -65.7

[Fe4O2Cl2(OAc)6(bpy)2] (4) Jbb ) J12 -18.5 (-12.3) +8.1 (+4.6) +2.5 (+1.0) -22
Jww ) J34 -1.5 (-1.5) -10.1 (-7.2) -9.5 (-6.8) -
Jwb ) J13 -100.7 (-64.9) -125.6 (-81.0) -126.1 (-81.4) -
J14 -63.3 (-40.8) -102.4 (-65.9) -102.2 (-65.7) -
J23 -119.7 (-76.9) -141.2 (-90.7) -145.0 (-93.1) -
J24 -112.4 (-71.7) -139.5 (-89.0) -139.1 (-88.7) -
Jwb -99.0 (-63.6) -127.2 (-81.6) -128.1 (-82.2) -82

a All values in cm-1. b See Figure 1 for atom labeling scheme. c References 37 (1), 38 (2, 3), and 47 (4). d Values in parentheses
obtained assuming spin couplings appropriate for two-center spin eigenfunctions. The appropriate value for each spin coupling can be
obtained from Table 1 by replacing all positive spin couplings with +6.25 and all negative spin couplings with -8.75.
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the range -13 cm-1 to -16 cm-1 for 1-4. The other
magnetostructural correlations mentioned above61-63 give
even more antiferromagnetic estimates. The large ferromag-
netic Jbb values found with DFT thus appear to disagree with
trends extracted from a great deal of experimental data on
dinuclear and higher nuclearity Fe3+ complexes.

Turning now to exchange constants extracted from mag-
netic susceptibilities of diferric complexes, the exchange
constant in these cases is directly related to the experimental
data since there is only one fitting parameter. A survey of
the literature on 65 diferric complexes with substituted and/
or unsubstituted oxo bridging ligands with available magnetic
susceptibility data showed a very wide range of exchange
constants, from -284 cm-1 ([(TPP)2Fe2O], TPP ) 7,8-
dihydro-5,10,15,20-tetraphenylporphyrinate; ref 64) to +2.4
cm-1 ([(salmp)2Fe2], salmp ) 2-bis(salicylidenoamino)m-
ethylphenolate; ref 65). It is interesting to note that only one
of the observed exchange constants is ferromagnetic, that
for [(salmp)2Fe2] with J ) +2.4 cm-1. This complex has
substituted oxo bridging ligands rather than unsubstituted oxo
ligands as in 1-4; the latter are known to have interactions
that are more antiferromagnetic.63 The diferric complex also
has significantly longer Fe-O bond distances in the bridging
pathway (∼2.02 Å vs ∼1.95 Å in 1-4). Given that J
becomes more antiferromagnetic with decreasing bond
distance,36,61-63 both factors indicate that Jbb in 1-4 would
be substantially more antiferromagnetic than the value of
+2.4 cm-1 observed for [(salmp)2Fe2] and hence likely have
negative signs. Again, the indication is that the Jbb values
found with DFT are considerably too ferromagnetic. This
might be a general tendency, as analogous behavior was
found for a similar exchange pathway in the complex
[Fe8O2(OH)12(tacn)6]8+ (ref 20; see also discussion in ref 32).
Additional testing is needed to further investigate this
tendency.

Another trend apparent in the exchange constants of Table
5 is that the DFT calculations give strongly antiferromagnetic
estimates for the wingtip-wingtip interactions Jww for all four
complexes. Again this does not depend heavily on basis set
or choice of spin coupling scheme. The ZILSH calculations
give estimates that are very weakly antiferromagnetic. Direct
comparison with experiment is not possible for this interac-
tion since fits of the magnetic data neglected this inter-
action.37,38,47 This was done because the wingtip ions do
not interact directly by means of a single-atom bridging mode
and were thus assumed to have a negligibly small exchange
constant. This is a standard assumption. While there is some
experimental evidence that such “second neighbor” interac-
tions might have nonzero exchange interactions (see, e.g.,
refs 66 and 67), the proposed exchange constants have
magnitudes less than 2 cm-1. It seems unlikely that exchange
interactions between metal ions that are not directly bridged
would be as large in magnitude as the DFT estimates for
Jww in 1-4. This is especially true given that Jww is larger in
magnitude that Jbb for 3 and 4 and of comparable magnitude
for 1 and 2, and the body-body interactions are mediated by
single atom bridging ligands. It thus appears that the DFT
calculations are overestimating the magnitudes of Jww in 1-4,

in contrast to the ZILSH calculations which give much
smaller magnitudes for these interactions.

Estimates of Jwb from the various methods of calculation
are more similar than the estimates of Jbb and Jww. When
comparing computed values to those found from fits of
experimental magnetic data, it is important to note that the
fits assumed equivalent Jwb interactions, so the empirical
values should be compared to average values obtained from
the FCS calculations. Two factors must be considered in
making these comparisons, including choice of method
(ZILSH or DFT) and choice of spin coupling scheme. The
role of basis set must also be considered for the DFT
calculations; this is discussed below. Starting with the choice
of method, the ZILSH calculations give better estimates of
Jwb (i.e., closer to the empirical values) than DFT for all
four complexes with spin couplings computed from the
ZILSH component wave functions and for compounds 2 and
3 with spin couplings appropriate for two-center spin
eigenfunctions. Taken together with the results found for Jbb

and Jww given above, this is a strong indication that the
ZILSH calculations provide a picture of magnetic interactions
in these complexes that is more consistent with experiment.
This was also found to be the case with the complex
[Fe8O2(OH)12(tacn)6]8+ (ref 32) but not for the complex
[Fe14O6(bta)6(OMe)18Cl6], in which DFT calculations gave
the correct ground-state spin while ZILSH calculations did
not.68 Clearly comparisons for additional complexes are
needed to clarify if one method is consistently more reliable
than the other for estimating exchange constants in poly-
nuclear transition metal complexes.

Turning now to choice of spin coupling scheme, in
comparisons within the same method DFT calculations give
much more accurate estimates of Jwb with spin couplings
appropriate for two-center spin eigenfunctions (Table 5). The
ZILSH calculations behave likewise for compounds 1-3,
while very similar errors in Jwb are found with the two
coupling schemes for 4. From a practical standpoint, then,
it appears that spin couplings appropriate for two-center spin
eigenfunctions give consistently better results. It is unclear
why this is the case. O’Brien and Davidson33 and particularly
Clark and Davidson,25,69,70 among others,21,71,72 have re-
cently considered this question from a theoretical perspective
rather than on the basis of a systematic comparison of
calculated and experimental results. While it is not our
intention to repeat or extend these theoretical analyses here,
some remarks can be made based on the results found for
1-4.

Conceptually, if spin component wave functions are
assumed to follow the effective Hamiltonian of eq 1, then
spin couplings should properly be evaluated as expectation
values of the operator ŜA · ŜB. O’Brien and Davidson33 showed
that in the formal case of single determinant component wave
functions with open-shell MOs centered entirely on the
radical centers and identical closed shell ligand MOs for R
and � electrons (i.e., no spin delocalization or spin polariza-
tion), the same exchange constants describing the true spin
states of the system are obtained if the spin couplings are
evaluated as expectation values of the local spin operator.
Again in the formal case, these expectation values are smaller
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in magnitude for single determinant wave functions than for
two-center spin eigenfunctions (e.g., (6.25 vs +6.25/-8.75
for single determinant wave functions and spin eigenfunc-
tions describing two coupled high spin d5 Fe3+ ions,
respectively). Exchange constants obtained with the method
of simultaneous solution of equations similar to eq 2 above
are inversely proportional to the magnitudes of the spin
couplings used, since the exchange constants are formally
obtained by multiplying a column matrix containing the
component energies by the inverse of a square matrix
containing the spin couplings. In the formal case, then, use
of spin couplings appropriate for two-center spin eigenfunc-
tions should lead to artificially small estimates of the
magnitudes of the exchange constants.

The obvious problem with this analysis is that the smaller
estimates obtained with two-center spin eigenfunction spin
couplings are more consistent with experimental results for
Jwb for 1-4. This could arise from cancelation of errors, as
component wave functions for real complexes do not
generally meet the formal conditions given above, i.e.,
unrestricted spin component wave functions do display spin
polarization and delocalization. Exchange constants obtained
from such wave functions are thus only approximations of
the exchange constants describing the true spin eigenstates
of a complex. Even if the component wave functions did
behave formally, the methods themselves still have intrinsic
error; i.e., neither ZILSH nor DFT calculations can be
expected to perfectly reproduce magnetic interaction energies.
The effect of these various considerations has not been
thoroughly elucidated theoretically or on the basis of
comparisons between calculated and empirical exchange
constants. It is also very important to note that in other cases
we have observed that the larger exchange constants found
with spin couplings obtained from the local spin operator
are more consistent with experiment.33,68 Further study from
both theoretical and practical perspectives is needed to clarify
these issues.

A final point to consider is the effect of basis set in the
DFT calculations. The larger exchange constants Jwb found
with the two basis sets are very similar (Table 5), with
differences on the order of 1 cm-1. The pairwise wingtip-
body interactions J13, J14, etc. share this similarity, differing
by no more than ∼3% (J14 of 2; J23 of 4) and by about 1
cm-1 in all other cases. This level of agreement seems
remarkable, given that basis set II is almost twice as large
as basis set I (e.g., 1038 vs 622 basis functions for 4), but it
should be recalled that exchange constants are based on
differences in energies of spin components with similar local
electronic structure (i.e., all open shell metal ions are locally
in high spin configurations, though they may be reversed
relative to the unpaired spin on another metal ion). It is thus
likely that any basis set errorswhich is itself a somewhat
nebulous concept in DFT (e.g., ref 73)sapproximately
cancels in subtracting to obtain energy differences contribut-
ing to Jwb. A clear basis set effect can be seen in the
interactions that are not well-described by the DFT calcula-
tions, particularly in the Jbb interactions. For those the larger
basis set consistently provides less ferromagnetic estimates,
though the values obtained are still in qualitative disagree-

ment with values obtained from empirical fitting of magnetic
susceptibility data.

Conclusions

Exchange constants describing magnetic interactions in
tetranuclear Fe3+ buttefly complexes 1-4 were estimated
with semiempirical ZILSH calculations and DFT calculations
using the B3LYP functional and two basis sets. Theoretical
analysis of a restricted configuration space (RCS) method
developed by Cauchy et al.37 for these complexes showed
that systematic errors in the exchange constants were incurred
by assuming equivalent wingtip-body interactions Jwb. Cor-
rection factors were derived and found to exactly reproduce
results from full configuration space (FCS) calculations.
Additionally it was shown that exchange constants obtained
from RCS calculations with different choices of spin
configurations had large variances. Again, derived correction
factors led exactly to FCS results in all cases. These results
indicate that RCS calculations must be handled carefully to
prevent significant errors if used in place of FCS calculations.

Comparisons of exchange constants obtained from ZILSH
and DFT FCS calculations with those obtained from empiri-
cal fits of experimental magnetic susceptibility data were
made. It was found that DFT calculations with both basis
sets gave strongly ferromagnetic estimates of exchange
constants describing interaction of the “body” iron ions (Jbb),
while ZILSH calculations gave antiferromagnetic estimates.
The latter are in much better agreement with empirical values
for these complexes as well as estimates from well-known
magnetostructural correlations in dinuclear and higher nucle-
arity Fe3+ clusters and empirical values found for diferric
complexes. DFT calculations with both basis sets also gave
unreasonably strong, antiferromagnetic exchange constants
for nonbridged, second-nighbor interactions between wingtip
ions (Jww), while ZILSH calculations gave uniformly small
estimates. ZILSH and DFT performed similarly for wingtip-
body interactions Jwb, with the former giving slightly more
accurate estimates. Together with the results found for Jbb

and Jww, these results indicate that the ZILSH method
provides exchange constants that are more consistent with
experiment for these complexes. Additional comparisons of
the two methods are needed to judge their relative abilities
to estimate exchange constants in polynuclear transition metal
complexes. With further calibration and (perhaps) improve-
ment, these computational methods could make important
contributions to ongoing study and development of single
molecule magnets.

Comparisons were also made between exchange constants
obtained with different spin coupling schemes. Consistently
better results were obtained with spin couplings appropriate
for two-center spin eigenfunctions rather than couplings
obtained as expectation values of the local spin operator
evaluated with ZILSH spin component wave functions. A
brief conceptual analysis of why this might occur was given.
This question needs to be investigated further from both
theorectical and practical (i.e., by comparing results against
experiment for known complexes) perspectives.

Very small differences were observed when comparing
exchange constants obtained from DFT calculations with
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basis sets of distinctly different sizes. This likely occurs
because basis set errors cancel in subtracting to obtain energy
differences in evaluating exchange constants. DFT calcula-
tion of exchange constants in larger complexes would be
facilitated by using smaller basis sets if the lack of basis set
effect observed here is substantiated with additional
comparisons.
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Abstract: We present a method to compute Coulomb and exchange matrices with predeter-
mined accuracy as measured by a matrix norm. The computation of these matrices is
fundamental in Hartree-Fock and Kohn-Sham electronic structure calculations. We show
numerically that, when modern algorithms for Coulomb and exchange matrix evaluation are
applied, the Euclidean norm of the error matrix ε is related to the threshold value τ as ε ) cτR.
The presented extrapolation method automatically selects the integral thresholds so that the
Euclidean norm of the error matrix is at the requested accuracy. This approach is demonstrated
for a variety of systems, including protein-like systems, water clusters, and graphene sheets.
The proposed method represents an important step toward complete error control throughout
the self-consistent field calculation as described in [J. Math. Phys. 2008, 49, 032103].

1. Introduction

In large scale Hartree-Fock and Kohn-Sham electronic
structure calculations, the Coulomb matrix J and the ex-
change matrix K are computed using various computational
approximations for which threshold values must be chosen
carefully in order to achieve a result of desired accuracy
without performing unnecessary work. Cauchy-Schwarz
screening of integrals and multipole approximations are
frequently used to control errors in individual matrix elements
εij.

1-10 Such approximations are governed by a threshold
value τ: whenever a contribution to a matrix element is
predicted to be smaller than τ, that contribution is neglected.
Thus, choosing a smaller τ generally gives a more accurate
result. However, smaller thresholds come with a performance
penalty, affecting the timings by orders of magnitudessee
Figure 1. One faces here a tradeoff between accuracy and
performance. Therefore, the value of τ has to be selected
with care.

In practice, it is preferable to control the error in the entire
matrix rather than individual contributions. Recently, it has
been found that controlling the accuracy in the electron
density amounts to controlling the Euclidean norm of the

error matrix for each approximation.11 The Euclidean norm
of a matrix A is defined as |A|2 ) max|x|2)1|Ax|2. The self-
consistent field iterations are in ref 11 seen as a sequence of
rotations of the occupied subspace, which uniquely defines
the electron density for a given basis set. Errors coming from
computational approximations, such as Cauchy-Schwarz
screening of integrals and multipole approximations, are
characterized as erroneous rotations. An erroneous rotation
can be quantified by the canonical angles Θ(X,X̃ ) between* Corresponding author e-mail: pawsa@theochem.kth.se.

Figure 1. The CPU time needed to evaluate Coulomb and
exchange matrices as functions of the threshold value τ.
These are example timings measured for a HF/3-21G
calculation on an insulin molecule.
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the exact subspace X and the perturbed subspace X̃. Using
matrix perturbation theory,16,17 we show in ref 11 that
controlling an erroneous rotation, as measured by the
canonical angles, amounts to controlling the Euclidean norm
of the error matrix E and knowing the band gap �:

|sin Θ(X, X˜ )|2e
|E|2

�- |E|2
(1)

The band gap � can be efficiently computed as a byproduct
of density matrix purification.12 Provided that the norms of
the error matrices can be controlled, all approximations can
be governed by a single parameter, specifying the desired
accuracy in the electron density, thus eliminating the need
for ad-hoc chosen threshold values. See ref 11 for details.
Along the lines of ref 11, we have previously presented
truncation strategies for density matrix purification based on
analytical error bounds of the canonical angles between exact
and perturbed subspaces.18 In this article, we aim to provide
a method for similar control of the Coulomb and exchange
matrix calculations.

One possible way of attacking this problem is using the
Frobenius norm: the above-mentioned methods for screening
away individual contributions can be used to compute upper
bounds of the error in matrix elements, provided that the
number of neglected contributions is accounted for. These
upper bounds εij are in turn related to the error in the total
matrix using the Frobenius norm

|E|F )�∑
ij

εij
2 (2)

Formally, the Frobenius norm |E|F could be used to estimate
the Euclidean norm |E|2 for a matrix E of size n using

1

√n
|E|Fe |E|2e |E|F (3)

Such estimation is however too loose for practical use, at
least for large systems. Also, useful upper bounds of error
matrix elements εij may be difficult to come by. These
difficulties cause the screening methods to be used in a
qualitative way only: different screening thresholds are tried
empirically until working ones are found. Such an approach
does not guarantee scalability to larger systems.

In this article, we present a method to determine the
relationship between the threshold value and the Euclidean
norm of the error matrix in an automatic fashion, using
extrapolation. Our method can be executed at run-time to
select integral thresholds for J and K. These thresholds will
be sufficiently tight to not obstruct the SCF convergence
while requiring only necessary work.

2. Interaction Screening in Point Charge
Model

In order to understand better the screening process, we study
a simplified, classical model consisting of N discrete charges
{Fi} with coordinates {ri}. We consider computation of the
potential generated by such a charge distribution, when
ignoring in the computations contributions smaller than a
threshold value τ. Our goal is to find out how the error

introduced in the screening process depends on τ. We choose
the charges to have nonuniform distributions. It has been
found that the distribution of density matrix elements for a
nonconducting material follows an exponential function.21

Therefore, we consider first the distribution Fi ) e-γxi where
xi are random numbers uniformly distributed in the [0, 1]
interval and γ is a parameter determining the spread of the
distribution. The expression for the Coulomb potential Vp

measured at Rp is

Vp )∑
i)1

N Fi

|ri -Rp|
(4)

We insert the formula for Fi to obtain the screening error
which we define as the normalized sum of all ignored
contributions:

εp(τ)) 1
N∑

i)1

N { exp(-γxi)

|ri -Rp|
,

exp(-γxi)

|ri -Rp|
< τ

0,
exp(-γxi)

|ri -Rp|
g τ

(5)

For large values of N, we can approximate the value of
εp(τ) with an integral over the variable x. Let us also assume
that all denominators are of the same order and do not affect
substantially the screening process and can therefore be
moved out of the integration |ri-Rp| ≈ Pp. We get

εp(τ) ≈ 1
Pp
∫exp(-γx)⁄Pp<τ

1
e-γxdx) 1

Pp
∫log((Ppτ)-1⁄γ)

1
e-γxdx (6)

) 1
Pp

[-1
γ

e-γx]log((Ppτ)-1⁄γ)

1
(7)

) 1
Ppγ

[Ppτ- e-γ] (8)

The second term e-γ is the smallest charge present in the
system. We can assume it is sufficiently small compared to
the applicable values of τ and interaction with it is always
screened away. We then obtain a compact formula

εp(τ) ≈ 1
γ

τ (9)

Let us repeat this derivation for another charge distribution.
We take this time a set of random charges Fi ) xi

2 where xi

are random numbers uniformly distributed in the [0, 1]
interval. We make the same approximations as for the other
charge distribution, that is assume that the denominator does
not affect the screening, and that we can replace the discrete
sum with an integral. We get the final expression

εp(τ) ≈ 1
Pp
∫0

x2⁄Pp<τ
x2dx) 1

3√Pp

τ3⁄2 (10)

A pattern can be observed: the screening error for both
studied charge distributions has the form

ε(τ)) cτR (11)

where c and R are some constants, and where the form of
the charge distribution will affect the exponent R of the
formula. We note that the functional form in eq 11 is
routinely used for numerical estimation of truncation errors
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in finite difference and finite element methods.22 In that
context, the expression is commonly written chR where h is
the mesh constant.

The presented interaction screening model can be used
more or less directly to simulate the effects of screening on
the Euclidean norm of the Coulomb error matrix. A particular
charge distribution corresponds then to a magnitude distribu-
tion of density matrix elements. Simple-minded (4-center
integral based) evaluation of the Coulomb matrix in turn
corresponds to the pairwise evaluation of the classical
potential as above. If we have used an orthogonal set of delta
functions as the basis, the Coulomb matrix becomes diagonal,
and the Euclidean norm of the error matrix can be computed
exactly as the largest perturbation of the diagonal matrix
elements. We have therefore a reason to presume that the
screening error will behave as given by eq (11).

3. Numerical Error Estimates

After establishing the likely functional form of the error as
given by eq (9), let us study the actual numerical error made
in calculations of Coulomb and exchange matrices in
Gaussian basis sets. We will consider the difference between
the computed matrix J and the exact matrix Jexact

E) J- Jexact (12)

and analogously for K. We will refer to the matrix E as the
error matrix and consider the Euclidean norm of E, ε ≡ |E|2.
Once the relation ε(τ) has been determined, its inverse τ(ε)
can be used to choose τ so that the resulting error ε ends up
at the requested accuracy.

Figure 2 shows the Euclidean norm of the error matrix
for different values of τ for computations of J and K for a
water cluster containing 156 water molecules, using the
6-31G** basis set. The calculations reported in this work
were performed with the Ergo program,19,20 with multipole
approximations for the Coulomb matrix according to ref 8
and an algorithm for the exchange matrix essentially as

described in ref 3. Matrices calculated at τ ) 10-9 were used
as reference for the computation of error matrices. For
threshold values smaller than 10-3 the logarithmic plot in
Figure 2 is nearly linear for both J and K, indicating that
the relationship between the threshold τ and the error ε is of
the form given by eq (11). Thus it appears that eq (11), which
was derived for the Coulomb case, is also valid for the error
in the exchange matrix. This is promising for our purposes
here: once the values of the constants c and R have been
established, we can easily select the threshold value τ so
that the error in the computed Coulomb or exchange matrix
is controlled

τ(εreq)) (εreq

c )
1

R (13)

where εreq is the requested accuracy when the error is
measured as the Euclidean norm of the error matrix.

So far we have only seen that eq (11) is valid for one
particular water cluster, for small enough values of τ. It
remains to investigate the relationship between τ and ε for
other systems, in order to see if our scheme is generally
applicable. Figure 3 displays collected curves for a number
of systems: same water cluster as above (H312O156), valino-
mycin (C54N6O18H90), insulin (C247N62O74S6H367), and a small
graphene sheet (C96H24). In all cases the behavior of the error
with respect to the threshold value τ is essentially in
accordance with eq (11). However, the numbers c and R vary
somewhat for different systems. In our calculations, we get
0.88 e R e 1.00. This is close to the value R ) 1 obtained
in Section 2 for an exponential distibution of charges and
thus agrees with earlier findings regarding the distribution
of density matrix elements.21 Values of c are implementation-
dependent. Therefore, in order to control errors using eq (13),
practical implementations should investigate the behavior of
errors for the particular system and basis set in question. If
we assume that the functional form in eq (11) is valid in all
cases, it is sufficient to calculate three matrices using different
threshold values in order to find values for the constants c
and R: the most accurate calculation is used as reference,
while the two others provide two points on the graph

Figure 2. Errors versus threshold values for J and K matrix
calculations on a water cluster containing 156 water mol-
ecules, using the 6-31G** basis set. Matrices computed at τ
) 10-9 were used as reference for computing the error
matrices.

Figure 3. Errors versus threshold values for J and K matrix
calculations for the four different test systems.
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allowing for calculation of c and R. Figure 3 suggests that
the three calculations needed to determine the error behavior
can be done at rather low accuracy, since the graphs appear
linear already for thresholds τ as large as 10-3. Thus, these
three calculations will be relatively cheap if high accuracy
is needed in the final result.

We have also investigated how the behavior of errors
changes during the self-consistent field iterations. Figure 4
shows the error behavior for the same water cluster as in
Figure 2, but this time for three self-consistent field cycles.
The calculation was performed at the Hartree-Fock level with
basis set 6-31G**, with a starting guess density projected
from a previous 3-21G calculation. There is a significant
difference between the electron density in the first cycle
compared to the second cycle, with the density affecting the
offset c but leaving the slope R virtually unchanged. This
has an effect on the error behavior: errors are somewhat
smaller in the first iteration compared to the second.
However, in the third iteration (and in all subsequent
iterations) the error curves are essentially the same as for
the second iteration. Therefore, performing three calculations
of J and K to assess the error behavior in cycle 2 would in
this case provide values for the constants c and R that would
be valid in all subsequent iterations. Our test calculations
on other systems show similar trends regarding the changes
in different self-consistent field cycles: only the first cycle
gives a change in density large enough to have a significant
effect on the behavior of errors in the J and K matrices, when
the starting guess is taken from a 3-21G calculation. This
is good news from a performance point of view: since a self-
consistent field calculation typically requires at least 5-10
iterations, the extra effort needed to find values for c and
alpha becomes only a small fraction of the total time since
those values can then be reused throughout the whole self-
consistent field calculation.

4. Selecting Threshold Values by
Extrapolation

Based on the observations in the previous section, we propose
the following scheme for error control in J and K matrix
constructions: first, three low-accuracy matrix evaluations Xi)

1, 2, 3, X ∈{J, K} are done in order to assess the error behavior,
where different indices correspond to calculations with differ-
ent threshold values τi) 1,2,3. The CPU time required to
evaluate these matrices is only a small fraction of the CPU
time required for a high-accuracy evaluation, see Figure 1.
An optimized code could accelerate the process even further
by computing all three at once rather than doing three separate
matrix evaluations. Next, error matrices Ej ) 1, 2 are computed
and the coefficients c and R can be determined:

E1 )X3 -X1, E2 )X3 -X2 (14)

R)
log ||E2||-log ||E1||

log τ2 - log τ1
, c) ||E1||τ1

-R (15)

Having evaluated the parameters c and R and given the
requested accuracy εreq of the matrices in the norm of choice,
the integral threshold can be trivially determined from eq
(13). Provided that the density is reasonably close to
convergence, this assessment of errors and evaluation of c
and R constants needs to be done only once, so that the

Figure 4. Errors versus threshold values for a Hartree-Fock
calculation on a water cluster containing 156 water molecules,
using the 6-31G** basis set. Matrices computed at τ ) 10-9

were used as reference for computing the error matrices.
Results for self-consistent field cycles 1, 2, and 3 are shown.
There is some change going from cycle 1 to 2, while the
results for cycle 3 are essentially the same as for cycle 2.

Figure 5. The error in the Coulomb and exchange energies
as a function of the screening parameter τ. The values have
been obtained for the first SCF cycle of a HF/6-31G**
calculation on the valinomycin molecule. The same density
matrix was used for all values of τ. The upper panel displays
the absolute values of the errors in the exchange and
Coulomb energies. The lower displays the energy error
divided by the corresponding threshold value.
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matrices can thereafter be computed with a requested
accuracy using eq (13). Although our approach is not based
on analytical error bounds, it is in practice applicable to most
systems of interest; apart from the systems described above,
we have also investigated water clusters of sizes varied
between 9 and 156 water molecules and polypeptide helices
of sizes between 54 and 418 atoms as well as different basis
sets of double- and triple-zeta quality with and without
polarization functions. We have not encountered any case
where the behavior of errors in approximate Coulomb and
exchange matrices is not well described by eq (11). In early
iterations, when the density still changes a lot in each step,
the extrapolation can be performed in every SCF step or since
the choice of threshold values is less critical at that stage,
transferred from previous cycles. After a few steps, when
the structure of the density matrix has stabilized, the
extrapolation coefficients can be straightforwardly reused.
Generally, as seen in Figure 3, the differences in c and R
for different systems are not very large.

It is worth noting that at the same threshold value, the
error in the exchange matrix is in our implementation 1-2
orders of magnitude lowersit is therefore beneficial to use
different thresholds for Coulomb and exchange calculations.
In general, the error in the exchange matrix depends in a
remarkably predictable fashion on the chosen threshold value.
The errors for the Coulomb matrix display some scatter of
the c value, but the slope R remains practically the same.

The scheme for selecting threshold values for computation
of the matrices J and K proposed here may also be applicable
to computation of the exchange-correlation matrix in Kohn-
Sham calculations, provided that the accuracy is governed
by one continuous parameter. The hierarchical cubature grid
generation scheme developed by Challacombe23 may be
suitable for this, since it needs only a single parameter to
determine the quality of the grid.

5. Concluding Remarks

We present an adaptive method for choosing the screening
threshold in calculation of the Coulomb and exchange
matrices. This method can be directly incorporated into the
single-threshold SCF scheme proposed in ref 11.

The scheme for Coulomb and exchange matrix error
control presented in this work does not make any assump-
tions about the actual calculation method of J and K matrices
apart from ability to control its accuracy with a single
threshold. It is important to note that the precise positions
and slopes of the error curves presented in this article are
dependent on details in the specific implementation; for
example if screening of integrals is done for basis function
products or for products of Gaussian primitives. Parameters
such as box sizes and maximum order of multipole expan-
sions may also affect the results. Thus, values for the
constants c and R should be determined separately for each
implementation. We also note that for the proposed scheme
to work for multipole methods, the method must be such
that a single threshold value governs the accuracy, with the
maximum degree of multipole expansion being a parameter
affecting performance but not limiting the accuracy.5-8

Since many SCF optimization schemes are based on the
energy,13-15 it is tempting to select thresholds by extrapola-
tion based on the errors in Coulomb and exchange energies.
Unfortunately, the Coulomb energy, as computed in our
implementation, behaves unpredictably as a function of τ,
see Figure 5. Therefore extrapolation based on the Coulomb
energy seems difficult.

The presented method allows us to automatically select
threshold values to control the error in the Coulomb and
exchange matrices given some desired accuracy |E|2 < εreq.
The requested accuracy εreq should be determined from the
band gap and the desired accuracy in the electron density as
described in ref 11. Using that strategy for error control, the
matrices are computed accurately enough to ensure conver-
gence, but, at the same time, the performance is not hampered
by excessively tight thresholds. We have recently presented
analytical error bounds with accompanying truncation strate-
gies for density matrix purification.18 Combined with the
present work this will allow for self-consistent field calcula-
tions without need for ad-hoc chosen threshold values.

Finally, we would like to stress that the presented
extrapolation scheme is based on on-the-fly numerical error
estimates. Achieving strict error control based on analytical
error bounds for Coulomb and exchange matrix construction
remains an open challenge.
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Abstract: We have investigated eleven density functionals, including LDA, PBE, mPWPW91,
TPSS, B3LYP, X3LYP, PBE0, O3LYP, B97-1, MPW1K, and TPSSh, for their performances
on describing hydrogen bond (HB) interactions. The emphasis has been laid not only on their
abilities to calculate the intermolecular hydrogen bonding energies but also on their performances
in predicting the relative energies of intermolecular H-bonded complexes and the conformer
stabilities due to intramolecular hydrogen bondings. As compared to the best theoretical values,
we found that although PBE and PBE0 gave the best estimation of HB strengths, they might
fail to predict the correct order of relative HB energies, which might lead to a wrong prediction
of the global minimum for different conformers. TPSS and TPSSh did not always improve over
PBE and PBE0. B3LYP was found to underestimate the intermolecular HB strengths but was
among the best performers in calculating the relative HB energies. We showed here that X3LYP
and B97-1 were able to give good values for both absolute HB strengths and relative HB
energies, making these functionals good candidates for HB description.

1. Introduction

Hydrogen-bond (HB) interactions play a very important role
in biochemistry. With the rapid development of biochemistry
and pharmacology, the field of the first principle computa-
tional study has grown enormously. Traditional ab initio
methodology, such as Møller-Plesset perturbation approach
(MP2, MP4),1,2 and coupled-cluster theory (CCSD(T)),3 etc.
can yield a highly accurate description of HB interactions,
provided that large basis sets are used. However, the dramatic
increase in computational cost with the size of systems limits
their applications to just benchmark calculations of small
molecules. Density functional theory (DFT) offers a promis-
ing alternative to the wave function-based methods.4 Par-
ticularly, Becke’s three parameter scheme,5 B3LYP, has
made great success in predicting the ground-state electronic
structures, reaction energetics, molecular geometries, and so

forth.4 However, it is now well documented that B3LYP is
unsatisfactory for the calculation of HB binding energies.6-11

It has a tendency to underestimate HB strength, and errors
accumulate for large systems involving multiple HB interac-
tions.9 New functionals were continually developed.12-27

Some representatives are PBE,12 mPWPW91,15 O3LYP,22

B97-1,17 TPSS,25 TPSSh,26 X3LYP,27 etc. These function-
als were claimed to be a significant improvement over
B3LYP in this or that aspect (see Table 1).12-27 Several
authors have explored the feasibility of these functionals on
the description of HB interactions (see Table 2).6-11,26 For
example, Zhao and Truhlar11 have performed an extensive
test for the HB behaviors of forty-four functionals with three
different basis sets against the so-called HB6/04 database.
The HB6/04 set contains six HB systems, (NH3)2, (HF)2,
(H2O)2, NH3/H2O, (HCONH2)2, and (HCOOH)2, with HB
strengths ranging from ∼13 to ∼68 kJ/mol using data
calculated by the W1 or W2 theory28 as references. Accord-
ing to an integrated performance, based on the mean absolute
deviations (MADs) of HB binding energies calculated by

* Corresponding author e-mail: xinxu@xmu.edu.cn.
† Xiamen University.
‡ Hong Kong University of Science and Technology.

J. Chem. Theory Comput. 2009, 5, 86–9686

10.1021/ct800237n CCC: $40.75  2009 American Chemical Society
Published on Web 12/04/2008



three basis sets of different sizes with and without counter-
poise corrections, PBE was concluded to be the best
functional for HB; while PBE0 was the best hybrid GGA,
VSXC29 the best meta-GGA and MPW1K,11 is the best
performer with the DIDZ (desert-island double-�) basis set.
In agreement with our previous results,24 OPTX was
concluded to be unsuitable for HB calculations. Staroverov
et al.26 has examined the performance of sixteen functionals,
focusing on the new generation of nonempirical functional
TPSS. It was concluded that TPSS is the most reliable
nonhybrid functional for dissociation energies and geometries
of H-bonded systems. The hybrid functionals are more
accurate than their nonhybrid counterparts, although TPSSh
surpasses TPSS only for geometries.26

It should be pointed out that all of the above works focused
only on the absolute deviation of the binding energy from
the corresponding reference value for an intermolecular
hydrogen-bond.6-11,26 The accuracy of each functional for
the description of the relative HB binding energies was not
examined. It is, however, the relative binding energies that
determine the best binding interaction mode among different
configurations. Furthermore, the functional performance for
the intramolecular HB interactions has not yet been system-
atically investigated. Such intramolecular HB can play a
decisive role in determining the conformer structure of a
biomolecule.

In the present work, we have examined the performances
of eleven DFT methods s LDA (SVWN5),30,31 PBE,
mPWPW91, TPSS, B3LYP, X3LYP, PBE0, O3LYP, B97-1,
MPW1K, and TPSShsto describe HB interactions. Fourteen
model systems have been chosen to simulate the intermo-
lecular HB interactions frequently appearing between the
main function groups of amino acids (i.e., amino, hydroxyl,
carboxyl, and peptide bond groups) in biochemical systems.
Special attention has been paid to the relative HB strengths

for different bonding interactions originating from the same
pair of monomers. The functional performance for intramo-
lecular HB interactions has been examined by looking into
the conformer stability of three amino acids (glycine, proline,
and serine). Three Ramachandran conformers of glycine
dipeptide have been chosen as examples to demonstrate the
interplay of HB and van der Waals (vdW) interactions in
the biosystems.

The remainder of this paper is organized as follows. In
section 2, we show the details of our calculations. In section
3, we present our results and discussion. In the last section,
we give the conclusions.

2. Computational Details

2.1. Reference Value of Intermolecular HB Binding
EnergysDe

SAPT. It is nontrivial to establish a reliable
reference set for HB from experiments, where theory shows
its power. The literature data are often taken from the
expensive methods such as CCSD(T) extrapolated to the
complete basis set limit or the Wn theory.11,32 We show
here that the reference values for intermolecular HBs can
be obtained satisfactorily by a relatively cheaper method,
the symmetry-adapted perturbation theory (SAPT). SAPT
was designed to calculate the interaction energy of a dimer,
consisting of two arbitrary closed-shell monomers.33,34 In
SAPT, the interaction energy was expressed as a sum of a
set of perturbative corrections, and each correction results
from a different physical effect (i.e., electrostatic, polariza-
tion, dispersion, and exchange).

The SAPT model we employed here is approximately
equivalent to the fourth order many body perturbation theory
(see eq 9 in ref 33). The geometries were first optimized by
MP2(full)/aug-cc-pVDZ.35,36 The basis set used in SAPT
interaction energy calculations was aug-cc-pVTZ basis

Table 1. Functionals Examined in the Present Work

name year HF% type ex corr comments

PBE 1996 0 GGA PBE ex PBE corr Improves over PW91.12

PBE0 1996 25 hybrid GGA PBE ex PBE corr Not far from the most reliable functionals including heavy
parametrization.14 Multiply bonded systems are most im-
proved.13

mPWPW91 1998 0 GGA mPW ex PW91 corr Significantly improves the long-range behavior. Allows to obtain
remarkable results both for covalent and noncovalent
interactions.15Can provide the binding states of the rare
gas, although the calculated binding energies cannot
reproduce the experimental trend in binding energies.16

B97-1 1998 21 hybrid GGA B97-1 ex B97-1 corr Improves over B3LYP and B97.17 Performs well on electrical
properties.18 Performs well on kinetics.19

MPW1K 2000 42.8 hybrid meta-GGA mPW ex PW91 corr Reduces the mean unsigned error in reaction barrier heights by a
factor of 2.4 over mPW1PW91 and by a factor of 3 over
B3LYP.20 Works very well on kinetics.21

O3LYP 2001 11.61 hybrid GGA OPTX ex LYP corr Substantially improves over B3LYP.22 Is overall better than
B3LYP, albeit not by much.23 Outperforms B3LYP in
most fields but failed in hydrogen bond systems.24

TPSS 2003 0 meta-GGA TPSS ex TPSS corr Gives generally excellent results for a wide range of systems and
properties, correcting overestimated PKZB bond lengths in
molecules, hydrogen-bonded complexes, and ionic solids.25

TPSSh 2003 10 hybrid meta-GGA TPSS ex TPSS corr In some cases surpasses in accuracy the best available
semiempirical approximations such as B3LYP, B3PW91, and
VSXC.26

X3LYP 2004 21.8 hybrid GGA X ex. LYP corr Improves over B3LYP especially for hydrogen-bonded and van der
Waals complexes. Will be useful for predicting ligand binding in
proteins and DNA.27
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set35,36 modified by removing the f and g functions. The
recommended MC+BS approach was used.33,34A bond

function of 3s2p1d was added, centered in the H-bond area.
The keyword scfcp was used to correct the basis set

Table 2. Representative Assessments of the DFTs’ Abilities on Describing Hydrogen Bonded Interactions

author and year functionals systems studied properties
methods for

reference values
author’s

conclusions
Tuma, C.; Handy, N.

C 19996
B3LYP, B97-1,

PBE0, HCTH,
BLYP, PBE, LDA,
and HTCH38

(HF)2, (HCl)2, (H2O)2,
(CO)(HF),
(OC)(HF),
(FH)(NH3),
(ClH)(NH3),
(H2O)(NH3),
(H3O+)(H2O)

binding energy CCSD(T)/
aug-cc-pVTZ or
aug-cc-pVQZ
BSSE corrected

Although the hybrid
methods performed
well in general, the
new HCTH38
functional as a pure
GGA predicted
binding energies of
better quality than
the B3LYP
functional.

Rabuck, A. D.;
Scuseria, N. C.
20007

B3LYP, BHLYP,
PBE, VSXC, and
PBE0

(HF)2, (HCl)2, (H2O)2,
(HF)(HCN),
(HF)(H2O),
(CN-)(H2O),
(OH-)(H2O),
(HCC-)(H2O),
(H3O+)(H2O),
(NH4

+)(H2O)

binding energy and
geometry

experiment and MP2
BSSE corrected

Overall, the hybrid
functionals which
contain a portion of
Hartree-Fock
exchange (B3LYP,
BHLYP, and PBE0)
yield the most
accurate results.
The kinetic-energy-
density-dependent
functionals, VSXC
and meta-GGA, are
significantly less
accurate.

Sherer, E. C.;
Cramer, C. J.
20038

BLYP, B3LYP,
mB3LYP,
mPWPW91, and
mPW1PW91

six base pairs for all
DFTs and another
22 base pairs for
mPWPW91/MIDI!

interaction enthalpies MP2/6-31G(d)//HF/
6-31G(d) and
experiment BSSE
corrected

At the pure and
hybrid density
functional levels,
mPWPW91/MIDI!
performed most
satisfactorily.

Staroverov V. N.;
Scuseria G. E.;
Tao, J. M.; Perdew,
J. P. 200326

16 DFT methods,
including LDSA,
PW91, PBE, PBE0,
PKZB, TPSS, and
TPSSh

(HF)2, (HCl)2, (H2O)2,
(HF)(HCN),
(HF)(H2O),
(CN-)(H2O),
(OH-)(H2O),
(HCC-)(H2O),
(H3O+)(H2O),
(NH4

+)(H2O)

binding energy and
geometry

DFT/
6-311++G(3df,3pd)
and MP2/
6-311++G(3df,3pd)

TPSS is the most
reliable nonhybrid
functional. It also
represents a
dramatic
improvement over
PKZB. The hybrid
functionals are
more accurate than
their nonhybrid
counterparts,
although TPSSh
surpasses TPSS
only for geometries.

Xu, X.; Goddard,
W. A. 20049

SVWN, BLYP, BP86,
BPW91, PW91,
mPWPW, PBE,
XLYP, BHLYP,
B3LYP, B3P86,
B3PW91, PW1PW,
mPW1PW, PBE0,
and X3LYP

H2O monomer and
H2O dimer

geometry, vibrational
frequencies, bond
energy, dipole
moment, kinetics,
polarizability

experiment and
CCSD(T)(FULL)/
IO275
extrapolations to
the complete basis
set; BSSE
corrected

The best overall
performance is
given by X3LYP,
comparing with the
exact values,
suggesting that
X3LYP should be
generally useful for
predicting accurate
properties for
systems dominated
by hydrogen
bonding,
electrostatics, and
van der Waals
(dispersion)
interactions, such
as ligand/protein
complexes.

Frey, J. A.;
Leutwyler, S.
200510

BLYP, B3LYP,
X3LYP, PBE,
PW91, and
mPWPW91

(formamide)2 and
(2-pyridone)2

binding energy MP2/CBS PW91 consistently
gives the best
agreement with the
MP2 basis-set limit
binding energies,
closely followed by
PBE. The
mPWPW91,
B3LYP, and the
recently proposed
X3LYP functionals
are in less good
agreement.

Zhao, Y.; Truhlar,
D. G. 200511

44 DFT methods,
including PBE,
PBE0, B3P86,
MPW1K, B97-1,
BHLYP, and
X3LYP.

(HF)2, (NH3)2, (H2O)2,
NH3/H2O,
(HCONH2)2,
(HCOOH)2

binding energy W1 and W2 theory25 Among the tested
methods, the PBE,
PBE0, B3P86,
MPW1K, B97-1,
and BHandHLYP
functionals give
good performance
for hydrogen
bondings.
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superposition errors (BSSE). The original SAPT results are
equivalent to the vertical bond dissociation energies, that is,
such SAPT calculations do not consider the structure
relaxation energy, which results from the difference between
the geometry of the isolated monomer and the geometry of
the monomer in the dimer. On the other hand, the HB binding
energies for DFT were calculated by using the supermo-
lecular model. To facilitate the comparison with the DFT
results, we calculated the relaxation energy at the MP4(SDTQ)/
aug-cc-pVTZ//MP2(full)/aug-cc-pVDZ level and added it to
the SAPT results to obtain the SAPT supermolecular binding
energy De

SAPT (see eq 1)

De
SAPT )-Eint

SAPT + (Emonomer
A -Edimer

A )+ (Emonomer
B -Edimer

B )

(1)

where Emonomer
A and Edimer

A are the calculated energies adopting
the optimized geometry of the isolated monomer and the
geometry of the monomer in the dimer, respectively. This
methodology has been applied to the HB06/04 database.11

The results are shown in Table 3. Clearly, SAPT achieved a
similar accuracy for the HB binding energies as the Wn
theory, with a MAD of 0.6 kJ/mol.

2.2. Intermolecular HB Complexes. The HB complexes
shown in Figure 1 were chosen to simulate the intermolecular
HBs between the main function groups of amino acids (i.e.,
amino, hydroxyl, carboxyl, and peptide bond group).37 They
are representatives of HB interactions most frequently

appearing in biochemical systems. Each dimer in D1-D7
contains a single XH...Y HB, where X, Y ) N or O. Each
dimer in D8-D11 contains a cyclic XH...Y HB, where X (N
or O) acts both as a proton donor and acceptor. Such kinds
of HBs are believed to play an important role in proton
transfer reactions. Each dimer in D12-D14 contains two
XH...Y HBs that form a cycle. HB interactions in D12-D14
are usually strong.

We do not include XH...π interactions in our testing set.
This type of interactions deserves special attention for its
biologic significance.38 While the electrostatic interaction is
mainly responsible for the attraction in the conventional
XH...Y HBs, the major source of attraction in the XH...π
interaction is the dispersion interaction,39 and it is well-
known that the commonly used LDA and GGA, designed
for nonuniform electron gases, fail to capture the essence of
vdW energies.40 Hence the conclusion of the present work
should be taken with caution for the biological systems
containing aromatic side-chains.

2.3. Conformational Analysis for Amino Acids and
Glycine Dipeptide. Amino acids and peptides are building
blocks of proteins. From the simplest glycine to more
complex peptides, each molecule may have many conform-
ers. These conformers are stabilized by intramolecular HBs,
which are counterbalanced by destabilizing steric strain and
lone-pair electron-repulsion interaction. The performance of
the DFT methods on describing the intramolecular HB

Table 3. Comparison between Results of SAPT and Wn for the Benchmark Database HB6/04a

(NH3)2 (HF)2 (H2O)2 (NH3)(H2O) (HCONH2)2 (HCOOH)2 MADc

De
SAPT 13.01 18.54 20.29 26.48 61.17 66.90 0.6

HB6/04b 13.18 19.12 20.79 26.82 62.51 67.57

a Units: kJ/mol. b Benchmark database HB6/04 was introduced by Zhao and Truhlar in ref 11; the values of (NH3)2, (HF)2, (H2O)2, and
(NH3)(H2O) are W2 results, and the values of (HCONH2)2 and (HCOOH)2 are W1 results. c MAD are calculated using Wn values as
references.

Figure 1. Fourteen intermolecular H-bonded complexes. Color codes: O (red), N (blue), C (dark gray), and H (light gray).
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interactions may be judged via the conformational analysis
of the amino acids. We selected six conformers of glycine,41

nine conformers of proline,42 and twelve conformers of
serine,43 where some of their accurate energetics are available
in the literature.41,42 The geometries are depicted in Figures
2, 3, and 4, respectively.

While single amino acids provide simple examples of
intramolecular HBs, small peptides are better representatives
of proteins. Figure 5 depicted three conformers of glycine
dipeptide.44 However, it should be noted that there may exist
π- π interactions, resulting from each amide plane of the
polypeptide backbone. The interplay between HB interactions
and vdW interactions is very important in a bioapplication,
which poses a great challenge to DFT.

2.4. Computational Methods. Eleven DFT methods,
including LDA, PBE, mPWPW91, TPSS, B3LYP, X3LYP,
PBE0, O3LYP, B97-1, MPW1K, and TPSSh, have been
examined here. At the beginning, we have also included
VSXC. It turned out VSXC has a strong tendency to
overestimate CH...Y (Y ) N or O) interactions, which

frequently led to failure of optimizations or wrong structures.
Hence VSXC’s results are not presented in this paper.

All geometries were optimized with the 6-311++G-
(2d,2p) basis sets.45,46 Analytical vibrational frequency
calculations were performed to ensure that each minimum
is a true local minimum, containing only positive frequencies.
For HB complexes, single point calculations with the
6-311++G(3df,2pd) basis sets45-47 were employed to
calculate the zero-point-exclusive binding energies, De, which
were then compared to the corresponding reference values
to check validity of a functional. Relative energies of the
different HB conformations made from the same pair of
monomers were calculated by subtracting the binding ener-
gies (which is equivalent to the subtractions of the total
energies). Functional performances were evaluated based on
MADs as well as variance analysis (VAR) from the reference
data.

For conformational analysis of the amino acids and glycine
dipeptide, the geometries and energies were obtained with
the 6-311++G(2d,2p) basis sets. The reference values were

Figure 2. Six conformers of gaseous glycine. Color codes: O (red), N (blue), C (dark gray), and H (light gray).

Figure 3. Nine conformers of gaseous proline. Color codes: O (red), N (blue), C (dark gray), and H (light gray).
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calculated by using the G3 theory, which were then compared
with the high level ab initio results in the literatures.41,42

In the present work, the SAPT interaction energy calcula-
tions were performed by using the SAPT2006 program
package.33 All other calculations were performed by using
the Gaussian 03 program package.48

3. Results and Discussion

3.1. Intermolecular Hydrogen Bonded Complexes.
3.1.1. HB Binding Energies. Table 4 shows the calculated
binding energies of fourteen HB dimers as shown in Figure
1. With respect to De

SAPT, errors of LDA are dramatic,
ranging from 10 to 50 kJ/mol. On average, LDA overesti-
mates the bond strength of a single HB by 15 kJ/mol. But
errors are more than tripled when forming a cyclic HB
complex (i.e., D13 or D14 in Table 4 and Figure 1), which
comprises two HBs. GGAs significantly amend this error.
MADs of the PBE and PBE0 functionals are only 2.55 and
2.64 kJ/mol, respectively, being the best functionals as
claimed by Zhao and Truhlar.11 MADs associated with TPSS
and TPSSh are 5.09 and 5.10 kJ/mol, which argue the
advantage of meta-GGAs for the description of HBs.26 Table
4 shows that B97-1 and X3LYP are the second best

performers, giving MADs of 3.24 and 3.77 kJ/mol, respec-
tively. Even though mPW was claimed to have improved
behavior in low density (large gradient) regions,11-15 which
is important for HB, MADs associated with mPW are 4.34
(MPW1K) and 5.69 kJ/mol (mPWPW91). B3LYP’s perfor-
mance is actually not far from mPWPW91, leading to a
MAD of 6.07 kJ/mol. A severe underestimation (about
10-23 kJ/mol) can be found with O3LYP (Table 4),
reconfirming the conclusion that O3LYP cannot be recom-
mended for treating HB systems.11,24

As seen from Figure 6 and Table 4, the functional
performance based on the VAR data is not identical to that
based on MADs. As HB strengths for D1-D14 are ranging
from 16 to 67 kJ/mol, a small VAR associated with a method
may suggest that this method is able to deal with HB of
varying strength on an equal footing. From Table 4, it is
clear that LDA leads to too high VAR (178.71 kJ2/mol2), as
errors may accumulate for multiple HB complexes. Errors
associated with O3LYP (VAR ) 23.30 kJ2/mol2) are also
very large, rendering it again an unsuitable method for HBs.
MPW1K (VAR ) 3.30) improves over mPWPW91 (VAR
) 5.56 kJ2/mol2), even though the former was originally fitted
against the kinetic data.11 The larger portion of the exact

Figure 4. Twelve conformers of gaseous serine. Color codes: O (red), N (blue), C (dark gray), and H (light gray).

Figure 5. Three Ramachandran conformers of glycine dipeptide. Color codes: O (red), N (blue), C (dark gray), and H (light
gray).
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exchange should contribute to the improvement. Signifi-
cantly, the best performers, based on the VAR data, are
B97-1 (1.27), B3LYP (2.59), and X3LYP (3.08 kJ2/mol2).
On the other hand, VARs of PBE (6.94) and PBE0 (4.35
kJ2/mol2) are considerably high. This may be related to the
fact that PBE and PBE0 overshoot the target values of De

SAPT

such as those in D10 and D14 but underestimate HB
strengths of other conformers. From Table 4, we see that
TPSS improves over PBE, having a smaller VAR of 5.79
kJ2/mol2. A smaller VAR may suggest that errors be more
systematic. This property is very important when the relative
energies rather than the absolute energies are concerned. We
will see this in the following discussion.

3.1.2. RelatiVe HB Energies. Complexes D11 and D2 are
formed with the same pair of monomers. The geometric
difference between them is the reorganization of hydrogen
bonds. The same relationship can be found between other
four pairs of monomers (i.e. D8 and D3, D10 and D5, D9
and D6, D13 and D7). Table 5 summarizes the reorganization
energies obtained by using SAPT and various flavors of DFT
methods. MADs for these five pairs with respect to the SAPT
values are also presented. Clearly, B97-1, B3LYP, and
X3LYP are the best performers, giving MADs less than 1.5
kJ/mol.

In terms of MAD of the relative HB energies, data in Table
5 show that there is a general improvement over the
calculated HB data as listed in Table 4. This is understand-
able, as errors associated with a functional may cancel out,
to some extent, when we take the difference of two HB
systems. On the other hand, we should note that errors can

be irregular. Take D11-D2 as an example, errors may depend
on type and strength of the HB interactions. Hence, different
errors encounter at a single HB of the N-H...O type of 16
kJ/mol as in D2 and a cyclic HB of the O...H-N...H-O
type of 52 kJ/mol as in D11. Clearly, the accuracy of a
functional to describe the relative HB binding energies is
very important, as the relative binding energies play a
decisive role in determining the best binding interaction mode
among different configurations.

As compared data in Tables 5 and 4, we see that the largest
improvement (10.42 kJ/mol) on the description of the relative
HB strength is seen for O3LYP. Nevertheless, a MAD of
5.23 kJ/mol still ranks O3LYP as the second poorest method
other than LDA. Noteworthily, PBE and PBE0 provide an
exception. Instead of error cancelation, errors accumulate for
the relative binding energy predictions, leading to MADs of
4.64 and 3.05 kJ/mol, respectively. We conclude that such
a disturbing behavior significantly downplays the role of PBE
and PBE0 for the description of a biosystem, where HB
interactions of different types and strengths compete with
each other.

3.1.3. Hydrogen Bond Distances. We also looked into the
hydrogen bond distances predicted by each DFT method.
Table 6 shows that there is a simple correlation between the
calculated H-bond distance and the calculated binding energy,

Table 4. Binding Energies of the Intermolecular Hydrogen-Bonded Complexesa

dimerb D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 MAD VARe

LDA 31.43 28.93 33.11 39.06 38.01 46.85 55.31 63.77 72.24 83.76 89.61 96.30 110.07 119.51 26.47 178.71
PBE 13.93 13.81 15.82 21.88 19.41 26.19 30.42 35.61 39.66 45.65 54.94 59.12 66.36 69.25 2.55 6.94
mPWPW91 11.09 10.67 12.47 19.08 16.28 23.01 26.11 31.42 35.27 41.30 50.88 54.10 61.38 64.22 5.69 5.56
TPSS 11.31 11.28 12.93 19.54 16.67 23.43 27.00 31.79 36.03 42.51 50.90 55.05 62.36 65.31 5.09 5.79
B3LYP 10.29 11.51 13.35 19.46 17.53 23.77 27.99 29.75 35.02 39.87 46.99 53.64 60.50 62.30 6.07 2.59
X3LYP 11.88 13.31 15.23 21.21 19.50 25.77 30.50 32.05 37.61 42.55 48.83 56.61 63.64 65.56 3.77 3.08
PBE0 13.01 14.06 16.02 21.25 19.83 26.36 31.30 34.31 38.83 44.22 52.72 58.66 66.02 68.74 2.64 4.35
O3LYP 6.78 7.32 8.62 13.51 12.05 17.24 18.62 20.71 23.10 26.69 36.78 38.87 43.76 44.02 15.65 23.30
B97-1 13.64 14.69 16.48 21.21 19.87 25.90 31.34 33.56 37.57 42.09 50.25 56.94 63.22 64.85 3.22 1.27
MPW1K 11.05 12.68 14.52 19.62 18.58 24.94 29.79 31.55 36.40 41.71 49.54 55.94 63.60 66.40 4.35 3.30
TPSSh 11.16 11.60 13.27 19.44 17.03 23.66 27.62 31.53 35.87 41.99 50.23 55.06 62.35 65.17 5.10 4.51
De

SAPTc 16.36 18.95 21.21 22.89 22.93 28.74 36.40 37.11 40.17 43.39 54.14 61.17 66.65 66.90
W1d 62.51 67.57

a Units: kJ/mol. b The structures of D1-D14 are depicted in Figure 1. c De
SAPT refers to the SAPT supermolecular binding energies,

obtained by the combination of the SAPT interaction energies and the corresponding structural relaxation energies at MP4 (see eq 1). d W1
values are taken from ref 11. e VAR ) [n∑X2 - (∑X)2 ]/n(n - 1), where X is the difference between DFT results and the corresponding
SAPT results, and n ) 14. Units: kJ2/mol2.

Figure 6. Statistic data of DFTs on binding energy calcula-
tions of fourteen intermolecular hydrogen-bonded complexes.
MAD (mean absolute deviation) in kJ/mol and VAR (variance)
in kJ2/mol2.

Table 5. Relative Energies between Dimers Made of the
Same Pair of Monomersa

dimerb D11-D2 D8-D3 D10-D5 D9-D6 D13-D7 MAD

LDA 60.68 30.65 45.75 25.39 54.77 20.80
PBE 41.09 19.79 26.23 13.47 35.94 4.64
mPWPW91 40.21 18.91 25.02 12.22 35.27 3.68
TPSS 39.62 18.86 25.84 12.60 35.35 3.80
B3LYP 35.48 16.40 22.38 11.21 32.55 1.05
X3LYP 35.48 16.82 23.05 11.84 33.14 1.42
PBE0 38.66 18.28 24.39 12.47 34.73 3.05
O3LYP 29.46 12.09 14.64 5.86 25.15 5.23
B97-1 35.56 17.11 22.22 11.67 31.84 1.05
MPW1K 36.86 17.03 23.14 11.51 33.81 1.80
TPSSh 38.64 18.26 24.96 12.20 34.74 3.11
De

SAPTc 35.19 15.90 20.46 11.46 30.25

a Units: kJ/mol. b The structures are depicted in Figure 1. Each
dimer pair differs only in interaction modes. c MAD are calculated
using SAPT values as references.
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i.e., a method that predicts a stronger H-bond always gives
a shorter H-bond distance. For example, the H-bond distances
obtained by X3LYP are systematically shorter than those of
B3LYP. This is consistent with the trend that B3LYP
generally underestimates HB energies. Hence, O3LYP gives
the longest H-bond distances and the lowest binding energies,
while LDA give the shortest H-bond distances and the
highest binding energies.

3.2. Conformational Analysis of Amino Acids. 3.2.1. Gly-
cine. Table 7 shows the relative energies of six selected
conformers of gaseous glycine (see Figure 2). We follow the
labeling scheme introduced by Császár who used p to denote
conformers of Cs symmetry and n to those of C1 symmetry.41

Our calculated values by the G3 theory compare well with
Császár’s ‘final prediction’, which is the extrapolation of the
MP2 energy to the infinite-order with an estimated maximum
error of ∼1.2 kJ/mol. We anticipate that the G3 values are more
accurate, as it is extrapolated to QCISD(FULL,T)/
6-311+G(3d2f,2df,2p) plus an empirical high level correction.
The MAD data with respect to G3 in Table 7 seem to suggest
that all functionals, other than PBE and mPWPW91, work well,
with X3LYP, B3LYP, and B97-1 being better than others
(MADs ) 0.40-0.59 kJ/mol). There is a significant improve-
ment for B3LYP to estimate the relative HB energies. Even
O3LYP leads to only a MAD of 0.71 kJ/mol. Noteworthily,
LDA, PBE, mPWPW91, and TPSS give MADs larger than 1.50
kJ/mol, respectively. In fact, these functionals fail to correctly
predict the most stable conformer, erroneously putting 2n lower
in energy than 1p. Even though PBE, mPWPW91, and TPSS
have been suggested to be good performers for HB,11,26 clearly,
such a conclusion has to be taken with caution based on our
present results.

3.2.2. Proline. Table 8 shows the relative energies of nine
conformers of gaseous proline (see Figure 3). The ‘best’
literature values were taken from ref 42. These are from the
focal-point approach, by extrapolating the RHF and MP2
energies to the complete basis set limit, appending coupled-
cluster energy increments to the extrapolated results, and
finally adding the core correlation corrections and relativisticT
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Table 7. Relative Energies of Six Conformers of Glycine
Given by DFTs with 6-311++G(2d,2p)a

conformerb 1p 2n 3n 4n 5n 6p MADd

LDA 0.00 -11.19 6.30 1.60 11.13 20.22 3.84 (3.66)
PBE 0.00 -2.27 6.17 5.10 11.83 19.41 1.68 (1.31)
mPWPW91 0.00 -1.96 6.18 5.36 11.92 19.52 1.61 (1.28)
TPSS 0.00 -2.06 6.09 5.43 11.61 19.71 1.56 (1.23)
B3LYP 0.00 2.50 6.72 5.56 11.63 21.08 0.41 (0.66)
X3LYP 0.00 2.47 6.76 5.42 11.57 21.21 0.40 (0.65)
O3LYP 0.00 3.20 6.63 6.18 11.95 20.29 0.71 (0.84)
PBE0 0.00 0.53 6.91 5.19 12.24 20.77 0.78 (0.90)
B97-1 0.00 2.00 6.68 5.74 11.96 20.58 0.59 (0.59)
MPW1K 0.00 2.47 7.35 5.39 12.47 21.78 0.71 (1.06)
TPSSh 0.00 -0.82 6.42 5.42 11.76 20.26 1.17 (1.04)
G3 0.00 2.68 6.98 5.25 10.66 20.75 -
‘best’ literature

valuec
0.00 2.05 6.70 5.15 10.51 19.76 0.43

a Units: kJ/mol. b See Figure 2 for structures. The labeling
scheme was introduced by Császár who used p to denote
conformers of Cs symmetry and n to those of C1 symmetry.41

c The ‘best literature value’ is Császár’s ‘final prediction’,41 which
is the extrapolation of the MP2 energy to the infinite-order. d MADs
are given with respect to the G3 values. Numbers in parentheses
are MADs with respect to the ‘best’ literature values.
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corrections. The uncertainty of these final values was
estimated to be 2 kJ/mol. Our G3 values are also listed in
Table 8. We anticipate that the G3 values are less accurate
due to the finite basis set effect. There is, however, an
inconsistency among data of ref 42 for conformer 7. We
recalculated the MP2/cc-pVTZ data and concluded that the
energy reported in ref 42 for conformer 7 is in error. Our
final value following the same focal-point approach42 led to
14.78, instead of 18.54 kJ/mol.

The MAD data with respect to the best numbers show
that the results of X3LYP, B3LYP, and B97-1 (0.41-0.49
kJ/mol) are much better than those of PBE and mPWPW91
(4.33 and 4.10 kJ/mol, respectively). MAD of PBE is ten
times larger than that of X3LYP. For conformers 3-9, PBE
and mPWPW91 significantly underestimate their stabilities.

All DFT methods correctly predict that conformer 1 is the
global minimum, and the trend of relative stabilities of
different conformers is generally correct. However, there are
some notable exceptions. While conformers 3 and 4 have
comparable stabilities, the reference value suggests that
conformer 3 is more stable than conformer 4. All DFT
methods, except LDA and PBE, predict the reverse relative
stability. From Table 8, we see that LDA, PBE, and TPSS
erroneously predict that conformer 8 is more stable than
conformer 7. O3LYP also reverses the relative stability of 5
and 6 as well as 7 and 8.

3.2.3. Serine. Table 9 shows the relative energies of twelve
conformers of gaseous serine (see Figure 4). We calculate

the reference values by using the G3 theory, as there are no
reliable and accurate reference data available in the literature.
MADs of X3LYP, B3LYP, and B97-1 are around 1 kJ/
mol, being the best performers. LDA is again the worst
performer (MAD ) 9.81 kJ/mol). MADs of PBE, mP-
WPW91, and TPSS are 3.46, 3.21, and 3.16 kJ/mol,
respectively, being unsatisfactory. O3LYP leads to a MAD
of 1.44 kJ/mol. Nevertheless, it erroneously predicts con-
former 2, instead of conformer 1, as the global minimum.
X3LYP, B3LYP, and B97-1 generally give the correct trend
for the relative stability of different conformers, although
they reverse the trend between conformers 3 and 4 as well
as conformers 10 and 11. From Table 9, we can see that
LDA, PBE, PBE0, mPWPW91, TPSS, and TPSSh fail to
give a qualitative trend. They reverse the trend between
conformers 10 and 11 and mess up conformers from 2 to 7.
Hence these functionals may not be suitable for the descrip-
tion of intramolecular HB interactions.

Taking all three amino acids into consideration (Tables
7-9), we may conclude that as the complexity of the amino
acid increases, the accuracy of PBE, PBE0, mPWPW91,
TPSS, or TPSSh decreases. The performance of X3LYP,
B3LYP, and B97-1 is stable, giving MADs of 1 kJ/mol or
less in conformational analysis of all three amino acids,
holding promise for the study of HBs of peptides and
proteins, which are linkages of amino acids.

3.2.4. Glycine Dipeptide. Table 10 shows the relative
energies of three Ramachandran conformers of gaseous

Table 8. Relative Energies of Nine Conformers of Proline Given by DFTs with 6-311++G(2d,2p)a

conformerb 1 2 3 4 5 6 7 8 9 MADd

LDA 0.00 4.21 19.59 20.51 26.74 26.74 31.05 28.96 32.59 12.00 (12.58)
PBE 0.00 2.14 11.39 11.48 18.39 19.00 20.52 20.18 21.17 4.09 (4.33)
mPWPW91 0.00 2.08 11.22 11.19 18.36 18.71 20.20 19.82 20.76 3.86 (4.10)
TPSS 0.00 2.18 11.28 11.14 17.88 18.36 19.86 19.73 20.70 3.69 (3.93)
B3LYP 0.00 1.75 6.89 6.15 13.61 13.87 14.22 15.24 15.60 0.93 (0.47)
X3LYP 0.00 1.84 6.83 6.13 13.47 13.87 14.19 15.35 15.71 0.88 (0.41)
O3LYP 0.00 1.18 6.05 5.54 13.93 13.33 14.21 14.02 15.32 1.48 (0.96)
PBE0 0.00 2.48 8.97 8.66 15.97 16.96 17.81 18.84 19.41 2.11 (2.42)
MPW1K 0.00 2.60 7.27 6.63 14.38 15.40 15.75 17.78 17.95 0.86 (1.05)
B97-1 0.00 1.93 7.37 7.03 13.94 14.68 15.55 15.99 16.63 0.53 (0.49)
TPSSh 0.00 2.33 10.30 9.91 16.81 17.49 18.66 19.14 19.92 2.83(3.10)
G3 0.00 3.56 7.11 7.43 13.43 14.72 14.90 16.67 16.57 -
‘best’ literature valuec 0.00 2.20 6.64 6.80 13.19 14.68 14.78 15.48 15.97 0.58

a Units: kJ/mol. b See Figure 3 for structures. c The ‘best’ literature values are from ref 42, which are the extrapolation of the CCSD(T)
energies to the infinite-order. The value for conformer 7 was miscalculated to be 18.54 kJ/mol. We updated it here as 14.78 kJ/mol. See
text for more details. d MADs are given with respect to the G3 values. Numbers in parentheses are MADs with respect to the ‘best’ literature
values.

Table 9. Relative Energies of Twelve Conformers of Serine Given by DFTs with 6-311++G(2d,2p)a

conformerb 1 2 3 4 5 6 7 8 9 10 11 12 MADc

LDA 0.00 9.51 9.68 -5.11 14.45 18.08 9.04 20.54 24.41 30.47 22.47 33.04 9.81
PBE 0.00 3.35 7.13 0.03 9.18 10.46 8.81 13.38 14.96 20.01 16.66 22.52 3.46
mPWPW91 0.00 3.04 7.14 0.27 9.01 10.02 8.45 13.01 14.60 19.50 16.36 22.15 3.21
TPSS 0.00 3.16 7.13 0.62 8.47 10.03 8.76 12.70 14.71 19.49 16.52 22.71 3.16
B3LYP 0.00 0.56 3.95 1.47 5.83 7.46 7.74 8.56 10.25 14.05 12.33 17.60 1.09
X3LYP 0.00 0.73 3.82 1.42 5.81 7.70 7.93 8.62 10.32 14.13 12.41 17.68 1.02
O3LYP 0.00 -0.54 4.63 2.23 6.78 6.25 7.20 8.56 9.44 13.84 12.16 16.98 1.44
PBE0 0.00 2.65 5.36 1.02 8.59 10.11 8.91 11.80 13.10 17.57 15.48 21.23 2.29
MPW1K 0.00 1.97 4.27 1.69 7.50 9.60 8.91 10.40 11.80 15.83 14.51 20.25 1.34
B97-1 0.00 1.23 4.66 1.57 6.77 8.30 8.42 9.66 10.96 15.28 13.12 19.09 1.01
TPSSh 0.00 2.87 6.33 1.03 8.36 9.92 8.75 12.13 13.85 18.38 15.98 22.01 2.66
G3 0.00 1.79 2.93 3.02 5.49 8.81 9.39 9.43 9.59 12.96 13.46 18.74

a Units: kJ/mol. b See Figure 4 for structures. c MADs are given with respect to the G3 values.
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glycine dipeptide (see Figure 5). We followed the labeling
scheme in ref 44, using C7eq, C5, and RL to label the
H-bonded cycle conformer, the unfolded conformer, and the
“L” conformer. The structures were taken from ref 44 and
reoptimized by using each method examined here. It is
known that the RR conformer is not an energy minimum for
dipeptide,49 so this conformer is not considered in this work.
We calculated the reference values by using the G3 theory.

Though all functionals, except O3LYP and MPW1K, gave
the right trend for the relative energy, none of them, with
the exception of LDA, gave results which were quantitatively
similar to those of the G3 theory. From the results and
discussion in the preceding sections, we see that B97-1,
X3LYP, and B3LYP are capable of giving a good description
of the relative bond strengths of HB interactions, the
degraded performance for these functionals for dipeptide has
to be attributed to their limitations in the description of inter-
residual nonbonded interactions.49 It should be noted that
there are π electrons, delocalized in the orbitals that are
perpendicular to the amide plane. According to the Ram-
achandran map, the C5 conformer has (Φ, Ψ ≈ 180°, 180°),
the C7eq conformer has (Φ, Ψ ≈ -60°, 60°), and the RL

conformer has (Φ, Ψ≈ 60°, 60°). Hence, the π-π interac-
tions are minimized in C5 and maximized in C7eq, while
the strength of the π-π interaction in RL is placed in the
middle of the three. To take effective error cancelations for
the dispersion interactions, one may choose RL as the
reference conformer, such that MADs are reduced to
2.64-2.89 kJ/mol for B97-1, X3LYP, and B3LYP from
the original 4.44-4.75 kJ/mol as shown in Table 10 where
C7eq is used as the reference conformer.

For the performance of other functionals, it is a result from
error cancelations (or accumulations) for the description of
HB and vdW interactions. Hence, the interplay between HB
and vdW interactions is very important in a bioapplication,
which poses a great challenge to DFT. Significantly, LDA,
being so poor for the description of HBs and vdWs11 either
alone, gave a very good performance in the case of glycine
dipeptide (see Table 10). It would be interesting to see how
effectively this error cancelation can carry on for the
description of longer peptides.

4. Conclusion

We have examined the performance of some popular DFT
methods (i.e., LDA, PBE, mPWPW91, TPSS, B3LYP,
X3LYP, PBE0, O3LYP, B97-1, MPW1K, and TPSSh) on
describing hydrogen-bond interactions. Here the emphasis
has been laid not only on functionals’ abilities to calculate
the intermolecular hydrogen bonding energies but also on
their performances of predicting the relative energies of
intermolecular H-bonded complexes and the conformer
stabilities due to intramolecular hydrogen bondings. As
compared to the best theoretical values, we conclude the
following:

(1) In terms of the intermolecular hydrogen bonding
energies, PBE and PBE0 give the smallest MADs. These
two functionals, however, always lead to large errors for the
prediction of the relative energies, giving wrong orders of
intermolecular binding configurations and intramolecular
conformations. Such conclusions can also be applied to
mPWPW91 and MPW1K. TPSS and TPSSh did not always
improve over PBE and PBE0.

(2) B3LYP, especially O3LYP, has a severe tendency to
underestimate the intermolecular HB bindings. However,
errors tend to cancel out in the predictions of relative HB
energies and conformational energy differences. Errors
associated with O3LYP are usually too large, lending this
functional to not be recommended for bioapplications,
whereas errors associated with B3LYP are usually small for
relative HB energies, showing the value of this functional.

(3) X3LYP and B97-1 treat well all of the HB systems
examined here. Not only do they give good results for
intermolecular HB energies but also they are the best
performers on calculating the relative energies of intermo-
lecular HB complexes and amino acid conformers. We
anticipate these functionals be good for systems where
hydrogen bondings of varying types and strengths are all
important.

(4) The interplay between HB and vdW interactions is very
important in a bioapplication, which poses a great challenge
to DFT. Other newer functionals (especially, the M06
series),50 which are very promising but have not yet been
available in the commercialized Gaussian package, will be
examined in due time.
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Abstract: Density functional theory is applied within a supramolecular approach to the study
of the guest-host interactions in [Fe(bpy)3]2+@Y and their influence on the structural, energetic,
and 57Fe Mössbauer spectroscopy properties of the encapsulated [Fe(bpy)3]2+ complex in the
low- and high-spin states. The structures of the isolated complex and the supramolecular model
used for [Fe(bpy)3]2+@Y were optimized in both spin-states using different generalized gradient
approximation (PBE, HCTH, OLYP) and hybrid (B3LYP*, O3LYP) functionals. The results
obtained are consistent with one another and show that, in either spin-state, the structure of
[Fe(bpy)3]2+ shrinks and distorts upon encapsulation. Still, the structural changes experienced
by the complex in a given spin-state remain limited, especially in that they do not lead to a
substantial variation of the 57Fe quadrupole splitting, whose calculated values are in very good
agreement with avalaible experimental data. The decomposition of the guest-host interaction
energy into its electrostatic, Pauli and orbital contributions shows that the bonding between the
complex and the supercage is more electrostatic than covalent. The ability of modern functionals
to accurately describe the interactions explains the remarkable consistency of the results obtained
with the various functionals. In particular, although the functionals perform very differently for
the determination of the high-spin/low-spin energy difference ∆E HL

el in [Fe(bpy)3]2+ and
[Fe(bpy)3]2+@Y, they consistently predict that the encapsulation entails a destabilization of the
high-spin state with regard to the low-spin state of ∆(∆E HL

el ) ) 2500 cm-1. Using for [Fe(bpy)3]2+

the CASPT2 value of ∆E HL
el ) 3700 cm-1 [Pierloot, K.; Vancoillie, S. J. Chem. Phys. 2006, 125,

124303; Pierloot, K.; Vancoillie, S. J. Chem. Phys. 2008, 128, 034104], we obtain for the high-
spin/low-spin energy difference in [Fe(bpy)3]2+@Y, a best ab initio estimate of ∆E HL

el ) 6200
cm-1.

1. Introduction

The increasing demand on new functional materials for
use in advanced nanoscale technologies makes the control
of the wide range of properties of transition metal
compounds a more than ever attractive goal. In this

respect, varying the environment of transition metal
complexes, hence the involved guest-host interactions,
proves to be an efficient means to finely tune their
electronic properties, as this will be exemplified here for
the title complex [Fe(bpy)3]2+ (bpy ) 2,2′-bipyridine).
This is a low-spin (LS) d6 complex, that is, its electronic
ground-state corresponds to the ligand-field 1A1(t2g

6 ) state,
while the ligand-field high-spin (HS) 5T2(t2g

4 E g
2) state lies
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too high in energy to become thermally populated. As in
the case of the spin-crossover systems, the population
of the metastable HS state can be achieved by photoex-
citation, and the kinetics of the subsequent HS f LS
relaxation can be followed by time-resolved absorption
spectroscopy.1 However, because of the larger HS-LS
zero-point energy difference (∆EHL° ) EHS° - ELS° ), the
relaxation dynamics reported for the LS [Fe(bpy)3]2+

complex are faster than for spin-crossover compounds.
Thus, while the low-temperature tunnelling rate constants,
kHL(T f 0), are between 10-6 and 10-1 s-1 for spin-
crossover compounds, they take on values between 104

and 108 s-1 for the title complex doped into a series of
photophysically inert crystalline hosts.2-5 The HS f LS
relaxation is described by the theory of nonadiabatic
multiphonon relaxation (see ref 1 and references therein).
The quantitative analysis of the low-temperature relaxation
dynamics reported for [Fe(bpy)3]2+ within this framework
showed that the different environments provided by these
hosts make ∆EHL° vary between 2500 and 5000 cm-1.6,7

In passing from the LS to the HS state, the metal-ligand
bond length of [Fe(bpy)3]2+ increases by ∆rHL ) rHS - rLS

≈ 0.2 Å, and concomitantly, the molecular volume increases
by ∆VHL ) VHS - VLS ≈ 20 Å3.6,8 This is caused by the
promotion of two electrons from the metallic nonbonding
orbital levels of octahedral t2g parentage into the antibonding
ones of eg parentage. The molecular volume of the complex
being larger in the HS state than in the LS state, the drastic
manner in which the environment influences the HS-LS
zero-point energy difference can be rationalized in terms of
an internal or chemical pressure exerted by the environment
of the hosts on the [Fe(bpy)3]2+ guest, which destabilizes
the HS state with respect to the LS state. The concept of
chemical pressure is of widespread use in solid-state physics
and in solid-state chemistry as it offers an appealing parallel
between the effect of the external pressure on a specific
property of a material and the effect on this same property
of a lattice volume variation obtained by chemical changes
(see, e.g., refs 9-11). Nevertheless, as discussed in refs 12
and 13, for instance, chemical and physical pressures are
not necessarily equivalent. Of special interest to us is the
concept of chemical pressure that was shown by Hauser et
al. to provide insight not only into the manner in which the
relative energies of the ligand-field states of the title complex
but also that of the complexes [M(bpy)3]2+ (M ) Ru, Co)
and, hence, into how their electronic properties can be tuned
by guest-host interactions.5 Still, it does not give a detailed
picture of the effective interactions, which we aim at
providing with the present study of [Fe(bpy)3]2+ encapsulated
in the supercage of zeolite Y ([Fe(bpy)3]2+@Y).

As recently reviewed by Gol’tsov,14 zeolites with encap-
sulated transition metal complexes are very convenient
materials for investigating guest-host interactions and their
influence on the physical and chemical properties of the
encapsulated complexes. Zeolites provide well-defined rigid
and stable frameworks with cavities of various sizes and
shapes, so that the encapsulation of transition metal com-
plexes in these cavities allows us to vary their environment
in a controlled manner. The supercage of zeolite Y has a

diameter of about 13 Å and openings of approximatively
7.4 Å,15 which allows the encapsulation of organometallic
molecules of a similar size, such as tris(2,2′-trisbipyridine)
complexes, using a ship-in-a-bottle synthesis. 16,17

The physicochemical properties of thus synthesized zeo-
lite-Y embedded LS [Fe(bpy)3]2+ complexes have been
investigated by several research groups.18-22 X-ray diffrac-
tometry (XRD) possibly combined with UV-vis reflec-
tance,18,19,21 IR,21,22 or solid-state NMR22 spectroscopies
helped evidence the formation of the complex within the
supercages of zeolite Y. 57Fe Mössbauer absorption spec-
troscopy was employed as well. This spectroscopy is an
efficient tool for probing spin crossover in iron systems.23-27

For the title LS complex, it allows the characterization of
the distortion undergone upon encapsulation. Thus, in the
first-ever reported study of [Fe(bpy)3]2+@Y by Quayle et
al., two samples containing 5.3 and 13 Fe ions per unit cell
were investigated.18 From the Mössbauer spectroscopy study
of the sample with the low iron loading, [Fe(bpy)3]2+ was
found to represent about 88% of the iron content and to be
characterized by an isomer shift of δ ) 0.63 mm s-1 and a
quadrupole splitting of ∆EQ ) 0.34 mm s-1. While this value
of ∆EQ is similar to those found for [Fe(bpy)3]2+ in other
matrices, that of δ is larger than the literature value of
0.3-0.5 mm s-1. This difference was ascribed to the
influence of the high electron density within the zeolite lattice
on the polarizable ligands.18 The analysis of the Mössbauer
spectrum of the second sample gave also [Fe(bpy)3]2+ as the
dominant iron species, with an abundance of ∼55%. Its
Mössbauer parameters, δ ) 0.46 mm s-1 and ∆EQ ) 0.35
mm s-1, are in line with those observed for the complex in
other environments. In an other study, Vankó et al.20

investigated three samples wherein [Fe(bpy)3]2+ was found
by Mössbauer spectroscopy to represent 38, 56, and 100%
of the iron content and to be characterized by δ ) 0.32 mm
s-1 and ∆EQ ) 0.32 mm s-1. Given that the ∆EQ values
thus determined for [Fe(bpy)3]2+@Y are very similar to those
found for the complex in other matrices, it especially follows
from these Mössbauer studies that the complex does not
undergo major distortions upon encapsulation.28

Interestingly, the trigonal symmetry of the complex turns
out to be preserved in the supercage. This could be inferred
from the IR spectroscopy study of [Fe(bpy)3]2+@Y.21 This
is also supported by the EPR spectroscopy study of
[Fe(bpy)3]3+@Y obtained by in situ oxidation, the recorded
spectrum being indeed characteristic of the trigonal LS
[Fe(bpy)3]3+ complex.18 Consequently, to theoretically in-
vestigate the influence of the second coordination sphere on
the properties of [Fe(bpy)3]2+ in zeolite Y, we adopted the
supramolecular model of C3 symmetry shown in Figure 1.
This one consists of the complex and the surrounding Si and
O atoms that define the supercage. The valence of the Si
atoms has been saturated with H atoms. Finally, the orienta-
tion of the complex is such that its trigonal axis coincides
with one C3 axis of the supercage, which has an ideal Td

symmetry. As shown below, the study of this model within
density functional theory (DFT)29-33 allowed us to get major
new insights into the nature of the guest-host interactions
in [Fe(bpy)3]2+@Y and into their influence on the structural,
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energetic, and Mössbauer spectroscopy properties of the
complex in the LS and in the metastable HS state.

Few studies have dealt with the experimental characteriza-
tion of the metastable HS state of the zeolite-Y embedded
complex. Vankó et al.34-36 used 57Fe Mössbauer emission
spectroscopy to investigate [57Co(bpy)3]2+ encapsulated in
the supercages of zeolite Y. They thus showed that three
nucleogenic 57Fe species are formed after the electron capture
57Co(EC) 57Fe nuclear decay: the LS [57Fe(bpy)3]2+ and LS
[57Fe(bpy)3]3+ complexes and a HS iron(II) complex with a
damaged coordination sphere. In similar investigations
performed on the system [57Co/Mn(bpy)3](PF6)2 by Deisen-
roth et al.,3,37 Mössbauer emission spectroscopy could be
used to show the formation of a fourth species, namely, the
ligand-field HS [57Fe(bpy)3]2+ complex and to follow
the dynamics of the subsequent HS f LS relaxation. The
absence of the ligand-field HS state of [57Fe(bpy)3]2+ in the
Mössbauer emission spectra of [57Co(bpy)3]2+@Y was
therefore ascribed by Vankó et al. to the very short lifetime
τHS of this state in zeolite Y, which results from the strong
increase of ∆E HL° upon encapsulation and which prevents
its detection with this spectroscopic technique. Nevertheless,
from the time-integral Mössbauer emission spectroscopy
intensity data of [57Co(bpy)3]2+@Y, Vankó et al. were able
to determine for τHS an upper limit of 60 ns or equivalently
a lower limit of 1.67 × 107 s-1 for kHL(T f 0).36

2. Computational Details

The Gaussian03 program package38 was used to optimize
the geometries of the isolated [Fe(bpy)3]2+ complex, the
supercage, and the [Fe(bpy)3]2+@Y model. The calculations
were run with the symmetry constrained to C3. The OLYP,39,40

B3LYP*,41-43 HCTH,44 O3LYP, 45 and PBE46,47 exchange-
correlation (XC) functionals were employed in combination
with the G basis set of Gaussian-type orbital (GTO) func-
tions. In this basis set, the H atoms are described by the
Pople double-� polarized 6-31G** basis set.48,49 For the
heavy atoms, the compact effective potentials (CEPs) of
Stevens et al. are used to describe the atomic core electrons,
while the valence electrons are described with associated
GTO basis sets of double-� polarized quality, for the C, Si,
O, and N atoms, (CEP-31G* basis set), and of triple-� quality
for the Fe atom, (CEP-121G basis set). 50,51 The optimization
calculations were performed with the default convergence
criteria, and it proved necessary to resort to a large integration
grid consisting of 99 radial shells and 770 angular points
per shell.

To get insight into the guest-host interactions in
[Fe(bpy)3]2+@Y, we have analyzed the interaction energy
between the complex and the supercage using the bonding
energy decomposition scheme implemented in the Amster-
dam Density Functional (ADF) program package.52,53 The

Figure 1. Supramolecular model used to investigate [Fe(bpy)3]2+@Y: the trigonal axis of [Fe(bpy)3]2+ coincides with one of the
C3 axes of the supercage that cross opposite six- and twelve-membered oxygen rings. The top drawings are side views of the
models that are related to each other by a 180° rotation about the main C3 axis; the bottom drawings are views from the top
(bottom left) and from the bottom (bottom right).
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calculations were performed on the optimized OLYP/G
geometries with the OLYP functional and the all-electron
TZP basis set of triple-� polarized quality from the ADF
Slater-type orbital (STO) basis set database, thereafter
referred to as the G basis set. The ADF package was also
used for the determination of the 57Fe quadrupole splitting
of the free and encapsulated [Fe(bpy)3]2+ complex. This one
was derived from the electric field gradient (EFG) at the iron
center obtained by scalar relativistic (SR) calculations carried
out within the zeroth-order relativistic approximation (ZORA),
as well as within the ZORA-4 approximation, which
incorporates the small component density.54 The EFG
calculations were performed with the all-electron ZORA
relativistic TZP basis set, (referred to below as the SR basis
set), and the OLYP and PBE functionals. In all calculations
with the ADF package, we could not make use of the C3

symmetry of the involved structures because this point group
is not supported. All these calculations were therefore
performed in C1 symmetry. A high accurracy parameter
“accint” of 6 was also used. Note that for the characterization
of the free or embedded complex in the HS state, it was
also necessary to apply electron smearing to help the
calculations converge; the smearing parameter “smearq”
being set to the small value of 0.003 Ha.

The Jmol program55,56 was used for visualizing the
molecular structures.

3. Results and Discussion

3.1. Characterization of [Fe(bpy)3]2+@Y in the Low-
Spin State. 3.1.1. Structural Properties. For all XC func-
tionals used, the optimization of the structure of the isolated
complex in C3 symmetry led to an optimized geometry of
D3 symmetry. In these calculated LS geometries of [Fe(b-
py)3]2+, as well as in others that are considered subsequently,
the arrangement of the ligands around the iron center are
characterized by the following structural parameters: the
Fe-N and Fe-N′ metal-ligand bond lengths, the dis-
tance C2-C2′ (see Figure 2 for the atom labeling) between
the pyridinyl moieties, and the angles defined in Figure 3.

The values found for these structural parameters in the
optimized LS geometries of free [Fe(bpy)3]2+ are reported
in Table 1, along with those found in the X-ray structure of
the LS complex.57 Note that the experimental geometry of
the complex in [Fe(bpy)3](PF6)2 is of D3 symmetry and that
we therefore verify in this case: θ ) θ′ and Fe-N ) Fe-N′,
as in the case of the optimized geometries. The inspection
of Table 1 shows that the calculated LS geometries are
consistent with one another and in good agreement with
experiment. Actually, the optimized geometries of [Fe(b-
py)3]2+ tend to be slightly more expanded than the experi-
mental one, as reflected by the somewhat larger optimized
iron-nitrogen and C2-C2′ bond lengths. This discrepancy
is the result of the neglect of the packing and counterion
effects in our calculations performed in the gas phase.

Given the confining environment provided by the super-
cage of zeolite-Y, the results of the calculations performed
for determining the structure of [Fe(bpy)3]2+@Y may exhibit
a strong dependence on the choice of the starting geometry.

The influence of this choice has been thoroughly investigated
by carrying out a series of geometry optimizations at the
OLYP/G level. The details of this analysis are given in the
Supporting Information. The most stable optimized geometry
thus obtained proves to be 11 220 cm-1 lower in energy than
the LS reference configuration defined as the LS [Fe(bpy)3]2+

complex and the supercage taken separately and relaxed at

Figure 2. Atom labeling used for the complex: the atoms with
primed labels belong to the equivalent pyridinyl moieties
which, in the supercage, are oriented toward the six-
membered ring at the bottom of the supercage (see Figure
1). Note that Hi and Hi′ refer to the hydrogen atoms bound to
atoms Ci and Ci′, respectively (i ) 3,..., 6).

Figure 3. Angles characterizing the arrangement of the
ligands around the iron center in [Fe(bpy)3]2+: � ) N -Fe-N′
is the bite angle; γ ) N-C2-C2′-N′ is the dihedral angle
between the ligand moieties; τ is the twist angle; θ (respec-
tively, θ′) is the angle between the z-axis and the generator
of the cone on which the nitrogen atoms labeled N (respec-
tively, N′) are located.
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the same theoretical level. Figure 4 gives a stereoscopic view
of this calculated structure that we also used as starting point
in the optimization calculations performed with the other
functionals for characterizing the LS [Fe(bpy)3]2+@Y system.

Figure 4 shows that the orientation of the complex within
the supercage helps minimize the steric repulsion between
the two subsystems. Thus, for each bipyridine, the Ci′-Hi′ (i
) 3, 4, 5) and C3-H3 bonds face a twelve-membered
window and point into the void. Likewise, the C4-H4 bond
points toward the center of the six-membered window which,
along with the previously mentioned twelve-membered
window, are bisected by the average plane of the ligand. In
addition, the C5-H5 bond points toward the twelve-
membered opening on the top (i.e., the one crossed by the
C3 axis), whereas the C6-H6 and C6-H6 and C6′-H6′ bonds
are inwardly directed. This optimal arrangement of the
complex within the supercage is preserved in passing to the
other calculated LS geometries of [Fe(bpy)3]2+@Y, which
actually are quite close to the OLYP/G geometry shown in
Figure 4. For all these computed geometries, selected bond
lengths and angles characterizing the first coordination sphere
of the encapsulated LS complex are summarized in Table 1.
The comparison of these structural data with their counter-
parts for the isolated LS complex shows that the complex
does not undergo a tremendous distortion upon encapsulation.
This can also be inferred from the superposition in Figure
5A of its geometries in the gas phase and in the supercage.

Figure 5A also shows that there is a slight shrinkage of
the geometry of the LS complex upon encapsulation. Thus,
depending on the considered theoretical level, there is a
shortening of the Fe-N and Fe-N′ bonds of 0.017-0.037
and 0.005-0.010 Å, respectively, and to a lesser extent
that of the C2-C2′ bond of between 0.003 and 0.005 Å.
Actually, for the different theoretical levels used, the
decrease of the Fe-N bond length is about 2-6 times
larger than the decrease of the Fe-N′ bond length. For
each ligand, given that the pyridinyl moiety with the “N”
labeled nitrogen atom comes the closest to the wall of
the supercage, the pronounced shrinking of the Fe-N
bond, as well as the accompanying noticeable decrease
of the ligand cone angle θ provide an efficient means for
minimizing the steric repulsion between this pyridinyl
moiety and the supercage. Although the Fe-N′ bond
length is far less affected by the encapsulation than the
Fe-N bond length, one observes an increase of the cone
angle θ′ of ∼1° to ∼2°, which is made possible thanks to
the space made available to the corresponding pyridinyl
moiety through the twelve-membered opening that faces
it. The encapsulation has also little influence on the bite
angle � since the value found for the encapsulated complex
differs by less than 1% from the optimal gas-phase value.
For the complex to fit at best within the supercage, the
twist angle τ substantially increases by about 1-3°
depending on the functional used. Similarly, the dihedral

Table 1. Selected Bond Lengths (Å) and Angles (deg) Characterizing the Geometry of the LS [Fe(bpy)3]2+ Complex: Results
of Geometry Optimization Calculations Performed on the Isolated and on the Zeolite-Y Embedded Complexa

Fe-N Fe-N′ C2-C2′ � γ τ θ θ′

OLYP/G [Fe(bpy)3]2+ 1.993 1.993 1.477 81.4 3.7 54.7 58.6 58.6
[Fe(bpy)3]2+@Y 1.956 1.986 1.473 82.2 7.5 56.9 57.7 60.3

HCTH/G [Fe(bpy)3]2+ 1.981 1.981 1.472 81.5 3.6 54.7 58.6 58.6
[Fe(bpy)3]2+@Y 1.951 1.976 1.468 82.3 6.0 56.9 57.8 60.1

PBE/G [Fe(bpy)3]2+ 1.972 1.972 1.482 82.2 3.0 53.6 58.2 58.2
[Fe(bpy)3]2+@Y 1.955 1.965 1.479 82.7 3.5 56.4 57.8 59.0

O3LYP/G [Fe(bpy)3]2+ 2.002 2.002 1.481 81.2 3.5 54.7 58.7 58.7
[Fe(bpy)3]2+@Y 1.966 1.994 1.476 82.0 7.2 56.7 57.8 60.1

B3LYP*/G [Fe(bpy)3]2+ 2.010 2.010 1.490 81.4 2.7 54.7 58.4 58.4
[Fe(bpy)3]2+@Y 1.986 2.000 1.486 82.1 3.7 55.8 57.9 59.3

exptlb [Fe(bpy)3](PF6)2 1.967 1.967 1.471 81.8 6.4 53.6 57.8 57.8

a The values found for these structural parameters in the X-ray structure of the LS compound [Fe(bpy)3](PF6)2 are also given for
comparison purpose. b Taken from ref 57.

Figure 4. Stereoscopic view of the most stable structure determined for the LS [Fe(bpy)3]2+@Y system at the OLYP/G level
(see text).
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angle γ increases by a factor of about 2, passing from
∼3.5° to ∼7°. The increase of γ is however not as large
in the case of the results obtained with the PBE and
B3LYP* functionals. Actually, the use of these two
functionals leads to the smallest γ values for the complex
both in the gas phase and in the supercage.

Finally, our results show that the geometry of the LS
complex only undergoes a slight distortion upon encapsula-
tion. For the complex, the concomitant energy change is
limited as illustrated by the fact that, at the OLYP/G level,
the passing from the relaxed geometry of the isolated
complex to that of the encapsulated complex translates into
a small energy increase of 1391 cm-1. Similarly, the
structural changes experienced by the supercage upon the
inclusion of the LS complex are minimal and give rise to an
increase of its energy by 3393 cm-1 (OLYP/G level). These
changes are illustrated in Figure 6A by the superposition of
the geometries of the supercage before and after the inclusion
of the LS complex, which indeed prove to be very close. In
summary, our results show that the encapsulation of the LS
[Fe(bpy)3]2+ complex in the supercage of zeolite Y does not
entail major geometric distortions neither for the complex
nor for the supercage.

3.1.2. 57Fe Mössbauer Quadrupole Splitting. As pointed
out in the Introduction, 57Fe Mössbauer spectroscopy has
proven to be an efficient tool for investigating
[Fe(bpy)3]2+@Y and especially for providing a measure of
the distortion of the encapsulated complex through the
determination of the quadrupole splitting ∆EQ for the 57Fe I
) 3/2 excited nuclear state. From a computational point of
view, ∆EQ is obtained from the calculation of the eigenvalues
of the traceless electric field gradient (EFG) tensor, VRR with
R ) x, y, z and |Vzz| g |Vyy| g |Vxx|, according to the relation

∆EQ )
eQVzz

2
×�1+ η2

3
(1)

where e is the electron charge, Q is the quadrupole moment
of the 57Fe nucleus in its I ) 3/2 excited state,58 where Q )
0.14 barn, (1 barn ) 10-28 m 2), and

η) |Vxx -Vyy

Vzz
| (2)

is the asymmetry parameter of the EFG tensor.
We proceeded to the determination of the principal values

of the EFG tensor for [Fe(bpy)3]2+ and [Fe(bpy)3]2+@Y in
the LS spin state by carrying out SR calculations within the
ZORA and ZORA-4 approximations. For the LS
[Fe(bpy)3]2+@Y system, the calculations performed either
on the whole system or on the [Fe(bpy)3]2+ subsystem gave
EFG components and also ∆EQ values that agree to within
less than 1%. This could be established from calculations
performed at the OLYP/SR and PBE/SR levels using the
structural description of the LS [Fe(bpy)3]2+@Y system
obtained at the OLYP/G level, as well as from calculations
performed at the PBE/SR level using the PBE/G structural
description of the system (data not shown). Consequently,
the determination of the EFG components and hence that of
the quadrupole splitting at the iron center in [Fe(bpy)3]2+@Y
can be very accurately done without including the second
coordination sphere in the calculations. That is, the influence
of the environment provided by the zeolite Y on the EFG at
the metallic center may be considered as being exclusively
caused by the distortion of the first coordination sphere
entailed by the encapsulation. The vanishing contribution of
the second coordination sphere to the EFG is probably caused

Figure 5. Superimposed geometries of [Fe(bpy)3]2+ showing
the structural variations undergone by the complex upon a
change of spin-states and/or upon encapsulation (OLYP/G
results): (A) optimized LS geometry of the isolated complex
(black) and its geometry as found in the most stable optimized
LS geometry of [Fe(bpy)3]2+@Y (white); (B) this latter LS
geometry (white) and the geometry of the complex as found
in the optimized HS geometry of [Fe(bpy)3]2+@Y (gray); (C)
geometry of the HS encapsulated complex (gray) and geom-
etry of the isolated complex in the HS state (light gray).
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by the central position of the iron atom within the supercage
which has an ideal Td symmetry. In passing to the real
[Fe(bpy)3]2+@Y system, the lattice contribution to the EFG
at the metallic center of [Fe(bpy)3]2+ remains vanishing
because of the location of the iron atom at or in the close
vicinity of a tetrahedral site of the cubic lattice. This allows
the direct comparison of the theoretical results obtained for
the 57Fe quadrupole splitting of the encapsulated complex
with the experimental ones.

Note that all EFG components and ∆EQ values given
below for [Fe(bpy)3]2+@Y in either spin-state were obtained
from calculations carried out with the geometry of the
encapsulated complex. This is the case for the results reported
for the LS [Fe(bpy)3]2+@Y in Table 2, which also give the
results obtained for the isolated LS [Fe(bpy)3]2+ complex.
For both LS systems, the magnitudes of the calculated
quadrupole splittings are in very good agreement with the
experimental estimate of 0.3-0.4 mm s-1 determined for
the LS complex in various media.18,3,20-22

The determination of the EFG components and thereof of
∆EQ actually exhibits a negligible dependence on the choice
of the functional. This could be inferred from the results of
calculations performed at the OLYP/SR and PBE/SR levels
(see Supporting Information, Table S1). Table 2 gives the
results obtained at the OLYP/SR level from the calculations
carried out on the OLYP/G, PBE/G, HCTH/G, O3LYP/G,
and B3LYP*/G structures. Its inspection shows that the
dependence of the results on the use of the ZORA or
ZORA-4 scheme is also neglibible because both schemes
lead to values of the EFG components and of ∆EQ which
differ by at most ∼1%. The influence of the methods used
being thus vanishingly small, we can draw the following
general conclusions.

The calculated EFG tensor exhibits an axial symmetry:
Vxx ) Vyy (η ) 0), in agreement with the trigonal symmetry
of the investigated systems. The calculations having been
performed within C1 symmetry, this attests to the adequacy
of the integration grid that has been used (see section 2) and
to the high numerical accuracy thus achieved for the
determination of the EFG. The sign of Vzz, or equivalently
that of ∆EQ (eq 1), is found to be negative. It has not been
established so far and its experimental determination requires

that the Mössbauer spectroscopy measurements be done
under an applied magnetic field.

For the isolated LS complex, ∆EQ ≈ -0.39 ( 0.01 mm
s-1. Upon encapsulation, the magnitude of ∆EQ decreases
to an extent which proves to depend on the theoretical level
used for the determination of the considered geometry of
the LS [Fe(bpy)3]2+@Y system (Table 2). This evidence that
the degree of distortion predicted for the encapsulated
complex should be considered as varying noticeably with
the functional used, although the different geometries
predicted for the LS [Fe(bpy)3]2+@Y model system may be
considered at first glance as being quite close to one another

Figure 6. Superimposed geometries of the supercage showing its structural changes upon the inclusion of the LS or HS
[Fe(bpy)3]2+ complex (OLYP/G results): (A) optimized geometry of the supercage in the gas phase (black) and its geometry as
found in the optimized LS geometry of [Fe(bpy)3]2+@Y (white); (B) this latter geometry (white) and the geometry of the supercage
as found in the optimized HS geometry of [Fe(bpy)3]2+@Y (gray).

Table 2. Calculated Principal Values of the Electric Field
Gradient Tensor, VRR (R ) x, y, z, in a.u.) and
Quadrupole Splitting ∆EQ (mm s-1) at the Iron Center for
[Fe(bpy)3]2+ and [Fe(bpy)3]2+@Y in the LS Manifold:
Results of SR Calculations Performed at the OLYP/SR

Level on the Optimized HCTH/G, O3LYP/G, and B3LYP*/G
Structures

Vzz Vxx ) Vyy ∆EQ

OLYP/G geometries
ZORA [Fe(bpy)3]2+ -0.280 0.140 -0.397

[Fe(bpy)3]2+@Y -0.222 0.111 -0.313
ZORA-4 [Fe(bpy)3]2+ -0.283 0.141 -0.400

[Fe(bpy)3]2+@Y -0.224 0.112 -0.317

PBE/G geometries
ZORA [Fe(bpy)3]2+ -0.276 0.138 -0.390

[Fe(bpy)3]2+@Y -0.263 0.131 -0.372
ZORA-4 [Fe(bpy)3]2+ -0.278 0.139 -0.393

[Fe(bpy)3]2+@Y -0.265 0.132 -0.375

HCTH/G geometries
ZORA [Fe(bpy)3]2+ -0.283 0.141 -0.400

[Fe(bpy)3]2+@Y -0.241 0.120 -0.341
ZORA-4 [Fe(bpy)3]2+ -0.285 0.143 -0.403

[Fe(bpy)3]2+@Y -0.243 0.122 -0.344

O3LYP/G geometries
ZORA [Fe(bpy)3]2+ -0.275 0.138 -0.390

[Fe(bpy)3]2+@Y -0.223 0.111 -0.315
ZORA-4 [Fe(bpy)3]2+ -0.278 0.139 -0.393

[Fe(bpy)3]2+@Y -0.225 0.113 -0.318

B3LYP*/G geometries
ZORA [Fe(bpy)3]2+ -0.268 0.134 -0.379

[Fe(bpy)3]2+@Y -0.253 0.127 -0.359
ZORA-4 [Fe(bpy)3]2+ -0.270 0.135 -0.382

[Fe(bpy)3]2+@Y -0.256 0.128 -0.362
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(Table 1). The ratio of the metal-ligand bond lengths Fe-N/
Fe-N′ constitutes an immediate and relevant measure of the
degree of distortion of the trigonal complex, which further-
more can be readily correlated with the values found for the
quadrupole splitting.

This ratio thus takes for the isolated LS complex a value
of one (1.000), as imposed by the molecular D3 symmetry,
and the results of the different EFG calculations lead to ∆EQ

≈ -0.39 mm s-1 to within ( 0.01 mm s-1. In passing to
the encapsulated LS complex of C3 symmetry, the Fe-N/
Fe-N′ ratio decreases, taking the values of 0.995, 0.993,
0.987, 0.986, and 0.985 for the geometries obtained with
the PBE, B3LYP*, HCTH, O3LYP, and OLYP functionals,
respectively. The quadrupole splittings determined from these
geometries vary monotonically with the Fe-N/Fe-N′ ratio,
taking the values of ∆EQ ≈ -0.38, -0.36, -0.34, -0.32,
and -0.32 mm s-1, respectively. That is, there is a negative
correlation between the Fe-N/Fe-N′ ratio and the value
∆EQ. Hence, as anticipated above, the quadrupole splitting
∆EQ increases with the distortion of the complex. Finally,
Vankó et al. having established that |∆EQ| ≈ 0.32 mm s-1

for the LS [Fe(bpy)3]2+@Y compound,20 the observed
correlation suggests that the OLYP, O3LYP, and HCTH
functionals perform better for the description of the structure
of the zeolite-Y embedded LS complex than the PBE and
B3LYP* functionals.

3.2. Characterization in the High-Spin State.
3.2.1. Structural Properties. The optimization calculations
performed with the Gaussian package for characterizing
[Fe(bpy)3]2+ and [Fe(bpy)3]2+@Y in the ligand-field HS
5T2(t2g

4 E g
2) state led to their characterization in the HS 5A

trigonal component. The other trigonal HS component of 5E

symmetry is not available through such calculations. This
indeed requires the use of fractional occupation numbers,
which actually is not implemented in the current version of
the Gaussian package, except as an intermediate step in the
self-consistent field convergence strategy. For the two
investigated systems, given that the 5AT 5E change of states
consists mainly in an electronic rearrangement within the
nonbonding metallic levels of octahedral Fe(t2g) parentage,
one can assume that the HS components are close in energy
and that they exhibit similar geometries, as effectively shown
for the isolated complex in a previous study.6 The charac-
terization thus achieved for the structures and the energetics
of [Fe(bpy)3]2+ and [Fe(bpy)3]2+@Y in the 5A state therefore
extends to the 5E component of the HS state as well.

For the HS [Fe(bpy)3]2+@Y system, the optimization
calculations were performed first with the OLYP functional.
This led to an optimized geometry wherein the orientation
of the complex within the supercage is identical to the
optimal one observed in the most stable structure of LS
[Fe(bpy)3]2+@Y (see Figure 7). We therefore did not carry
out further calculations for investigating the influence of the
choice of the initial geometry on the outcome of the
optimization calculations and used the optimized OLYP/G
geometry of HS [Fe(bpy)3]2+@Y as starting point in the
subsequent minimizations performed with the other func-
tionals. As for the isolated complex, the calculations
performed within C3 led to final HS geometries of effective
D3 symmetry.

The selected bond lengths and angles reported in Table 3
for the isolated (respectively, encapsulated) complex show
that the optimized HS geometries of [Fe(bpy)3]2+ (respec-
tively, [Fe(bpy)3]2+@Y) are consistent with one another. For

Figure 7. Stereoscopic view of the optimized OLYP/G geometry of the HS [Fe(bpy)3]2+@Y system.

Table 3. Selected Bond Lengths (Å) and Angles (deg) Characterizing the Geometry of the HS [Fe(bpy)3]2+ Complex:
Results of Geometry Optimization Calculations Performed on the Isolated and on the Zeolite-Y Embedded Complex

Fe-N Fe-N′ C2-C2′ � γ τ θ θ′

OLYP [Fe(bpy)3]2+ 2.244 2.244 1.499 73.9 6.0 47.1 60.7 60.7
[Fe(bpy)3]2+@Y 2.174 2.230 1.493 75.4 13.7 51.7 57.7 65.2

HCTH [Fe(bpy)3] 2.233 2.233 1.495 74.0 6.0 47.1 60.6 60.6
[Fe(bpy)3] @Y 2.177 2.222 1.490 75.4 12.3 51.8 58.0 65.0

PBE [Fe(bpy)3]2+ 2.195 2.195 1.502 75.5 5.6 47.1 59.8 59.8
[Fe(bpy)3]2+@Y 2.160 2.181 1.499 76.5 9.0 51.3 58.3 62.8

O3LYP [Fe(bpy)3]2+ 2.237 2.237 1.498 73.9 5.4 46.9 60.6 60.6
[Fe(bpy)3]2+@Y 2.178 2.226 1.493 75.2 12.8 51.5 57.8 65.2

B3LYP* [Fe(bpy)3]2+ 2.214 2.214 1.505 75.0 4.3 47.1 59.8 59.8
[Fe(bpy)3]2+@Y 2.177 2.200 1.501 76.0 8.2 51.0 58.2 63.4
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the isolated complex, these structural data also compare very
well with those previously reported for [Fe(bpy)3]2+ in the
HS state.6 As for [Fe(bpy)3]2+@Y, the optimized HS
geometries resemble the OLYP/G one shown in Figure 7.
In both cases, the major structural change undergone by
[Fe(bpy)3]2+ upon the LSf HS change of spin-states is the
lengthening of the iron-ligand bond, which follows from
the promotion of two electrons from the nonbonding metallic
levels of Fe(t2g) parentage into the antibonding metallic level
of Fe(eg) parentage. The comparison of Tables 1 and 3 shows
that this increase, ∆rHL, of the iron-nitrogen distance in
[Fe(bpy)3]2+ and in [Fe(bpy)3]2+@Y is on the average
between 0.20 and 0.25 Å, depending on the functional. For
the isolated complex, the large increase of the metal-ligand
bond length is accompagnied by a slight lengthening of the
C2-C2′ bond of ∼0.02 Å and by relatively large variations
of the angles �, γ, τ, and θ ) θ′, which reflect the structural
changes and spatial rearrangements undergone by the ligands
upon the LS f HS conversion, so as to maintain the
metal-ligand bonding interactions optimal. For the encap-
sulated complex, concomitant with the increase of the
metal-ligand bonds, there is likewise a ∼0.02 Å in-
crease of the C2-C2′ bond length and significant changes in
the values of the angular parameters �, γ, τ, and θ′; the value
of the cone angle θ remaining close to its LS value. The
structural changes thus undergone by the ligands can also
be seen in Figure 5B. Interestingly, the large expansion
experienced by the guest complex upon the LS f HS spin-
state conversion hardly affects the structure of the supercage
because of the rigidity of this host. This is illustrated in
Figure 6B by the nearly perfect match of the OLYP/G LS
and HS geometries of the supercage; the latter being less
stable than the former by 312 cm-1 only.

Inspection of Table 3 shows that the geometry of the HS
[Fe(bpy)3]2+ complex contracts upon encapsulation, as
exemplified in Figure 5C by the superposition of the OLYP/G
geometries of the HS complex in the gas phase and in the
supercage of zeolite Y. Depending on the considered
theoretical level, this shrinkage of the geometry of the HS
complex translates into a decrease of the Fe-N and Fe-N′
bond lengths of about 0.04-0.07 and 0.01 Å, respectively,
and also into a small decrease of the C2-C2′ bond length
(<0.01 Å). The angular parameters used to describe the
arrangement of the ligands in the HS geometry are also
noticeably influenced by the encapsulation. The cone angle
θ thus decreases by 1.5-3.0°, while the other cone angle,
θ′, increases by 3.0-4.6°. Concurrently, the bite angle � and
the twist angle τ increase by 1.0-1.5° and 3.9-4.7°,
respectively. The dihedral angle γ also substantially increases
by 6.3-7.7°, except in the case of the results obtained with
the PBE and B3LYP* functionals, wherein far smaller
increases of 3.5° and 3.9°, respectively, are predicted for γ.
As previously observed during the investigation of the
structural properties of the LS complex, the use of PBE and
B3LYP* functionals leads to the smallest predicted γ values
for the isolated and the encapsulated HS complex.

These structural changes experienced by the HS complex
to fit at best within the supercage are similar to but more
pronounced than those undergone by the LS complex upon

encapsulation. This clearly follows from the fact that the
molecular volume of [Fe(bpy)3]2+ is larger in the HS state
than in the LS state. The more pronounced distortion
undergone by the complex in the HS state upon encapsulation
can also be inferred from the comparison of Figure 5, parts
A and C, which show the superimposed OLYP/G geometries
of the isolated and of the encapsulated complex in the LS
and HS states, respectively. On a similar note, the passing
from the OLYP/G geometry of the isolated complex to the
one of the encapsulated complex is associated to an energy
increase of 3740 cm-1 for the complex in the HS state,
whereas this energy increase was found to amount to 1391
cm-1 only for the complex in the LS state.

3.2.2. 57Fe Mössbauer Quadrupole Splitting. The SR
calculations performed with the ADF package within C1 for
the determination of the EFG at the iron site of the isolated
or the encapsulated HS [Fe(bpy)3]2+ complex converged all
to the 5E trigonal component of the HS state. The results of
these calculations carried out at the OLYP/SR level on the
geometries of the free and of the encapsulated HS complex
are summarized in Table 4. Note that the choice of the
functional proves to have little influence on the results since
the EFG calculations similarly performed at the PBE/SR level
on the PBE/G and OLYP/G geometries gave results that
differ by 2% at most from those similarly obtained with the
OLYP functional.

There is a fairly good consistency among the results given
in Table 4. The calculated EFG tensors exhibit an axial
symmetry (Vxx ) Vyy), in agreement with the trigonal

Table 4. Calculated Principal Values of the Electric Field
Gradient Tensor, VRR (R ) x, y, z, in au), and Quadrupole
Splitting ∆EQ (mm s-1) at the Iron Center for [Fe(bpy)3]2+ and
[Fe(bpy)3]2+@Y in the 5E Component of the HS State:
Results of SR Calulations Performed at the OLYP/SR Levela

Vzz Vxx ) Vyy ∆EQ

OLYP/G geometries
ZORA [Fe(bpy)3]2+ 0.938 -0.469 1.328

[Fe(bpy)3]2+@Y 0.989 -0.495 1.400
ZORA-4 [Fe(bpy)3]2+ 0.936 -0.468 1.324

[Fe(bpy)3]2+@Y 0.986 -0.493 1.396

PBE/G geometries
ZORA [Fe(bpy)3]2+ 0.938 -0.469 1.327

[Fe(bpy)3]2+@Y 0.966 -0.483 1.367
ZORA-4 [Fe(bpy)3]2+ 0.936 -0.468 1.324

[Fe(bpy)3]2+@Y 0.963 -0.482 1.363

HCTH/G geometries
ZORA [Fe(bpy)3]2+ 0.946 -0.473 1.338

[Fe(bpy)3]2+@Y 0.991 -0.495 1.402
ZORA-4 [Fe(bpy)3]2+ 0.943 -0.472 1.334

[Fe(bpy)3]2+@Y 0.988 -0.494 1.398

O3LYP/G geometries
ZORA [Fe(bpy)3]2+ 0.941 -0.471 1.332

[Fe(bpy)3]2+@Y 0.991 -0.495 1.402
ZORA-4 [Fe(bpy)3]2+ 0.939 -0.470 1.328

[Fe(bpy)3]2+@Y 0.988 -0.494 1.397

B3LYP*/G geometries
ZORA [Fe(bpy)3]2+

[Fe(bpy)3]2+@Y 0.968 -0.484 1.369
ZORA-4 [Fe(bpy)3]2+

[Fe(bpy)3]2+@Y 0.965 -0.483 1.366

a Note that we were not able to make converge the calculations
performed on the B3LYP*/ G geometry of [Fe(bpy) 3]2+.
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symmetry of the investigated system. The sign of Vzz, hence
that of ∆EQ, is found to be positive and was not experimen-
tally determined so far. Further inspection of Table 4 shows
that ∆EQ ≈ 1.33 mm s-1 for the isolated complex in the 5E
state and that it increases in passing to the [Fe(bpy)3]2+@Y
system in the 5E state, as a consequence of the distortion
entailed by the encapsulation. As previously noticed for the
LS complex, this increase of ∆EQ upon encapsulation
depends on the XC functional used for optimizing the
considered HS geometry of the [Fe(bpy)3]2+@Y system. That
is, the degree of distortion predicted for the encapsulated
complex both in the LS and in the HS state depends on the
functional used.

The ratio Fe-N/Fe-N′ gives a measure of the distortion
of the trigonal [Fe(bpy)3]2+ complex: the smaller it is, the
more distorded the geometry of the complex. It takes the
values 0.990, 0.990, 0.980, 0.978, and 0.975 for the HS
geometries of [Fe(bpy)3]2+@Y obtained with the PBE,
B3LYP*, HCTH, O3LYP, and OLYP, respectively. Mean-
while, for the encapsulated complex in the 5E state the
calculated values of the quadrupole splitting are ∆EQ ≈ 1.37
for the PBE and B3LYP* geometries, and ∆EQ ≈ 1.40 for
the HCTH, O3LYP, and OLYP geometries. For
[Fe(bpy)3]2+@Y in the LS state, we could infer from the
comparison of the calculated and experimental values of ∆EQ

that the HCTH, O3LYP, and OLYP probably perform better
for the description of the structure of the encapsulated LS
complex than the PBE and B3LYP* functionals. Given that
the distortions predicted for the encapsulated complex in
the HS state follow the same trend as the one observed
in the LS state, this conclusion can actually be extended to
the description of the geometry of the encapsulated HS
complex. That is, the HCTH, O3LYP, and OLYP functionals
very likely perform better for the description of the structure
of the encapsulated complex in either spin state than the PBE
and B3LYP* functionals.

The above results and their discussion are valid for
[Fe(bpy)3]2+ and [Fe(bpy)3]2+@Y in the 5E component of
the HS state only. For the determination of the EFG tensors
of both systems in the 5A state, we were not able to make
converge the calculations performed within C1 to this
component of the HS state. For the isolated complex, we
nevertheless could do so by carrying out the calculations with
the molecular symmetry constrained to the effective D3

symmetry and the occupations of the Kohn-Sham levels
appropriately chosen (see ref 6). These calculations per-
formed on all the available HS geometries of [Fe(bpy)3]2+

at the OLYP/SR level gave 57Fe ∆EQ values of between
-2.69 and -2.66 mm s-1, depending on the considered
geometry. The quadrupole splitting of the encapsulated
complex in the 5A state obviously deviates from this gas-
phase value of about -2.7 mm s-1. However, as observed
for [Fe(bpy)3]2+ in the LS and in the HS 5E state, it should
remain close to this value because the HS geometries of the
complex in the gas phase and in the supercage stay close.
The 5E f 5A internal conversion mainly involves an
electronic rearrangement within the metallic levels of non-
bonding octahedral Fe(t2g) parentage. As pointed out by
Lawson Daku et al.,6 this change of states translates into

the transfer of electron density from the xy-plane to along
the trigonal z-axis, which explains the change of sign and
of magnitude found for ∆EQ in passing from the 5E to the
5A state.

The Mössbauer parameters of the HS complex have been
experimentally determined by Deisenroth et al. from the
Mössbauer emission spectroscopy study of [57Co/
Mn(bpy)3](PF6)2.

3 In this matrix, they measured for the
nucleogenic HS [57Fe(bpy)3]2+ complex a quadrupole split-
ting of |∆EQ| ) 1.17 mm s-1. The ∆EQ values calculated
for the complex in the 5E state are in fairly good agreement
with this value. We can therefore conclude that the 5E state
is the lowest-lying component of the HS state of the complex
doped into [Co(bpy)3](PF6)2. For the isolated complex, note
that the two components of the HS state were shown to be
nearly degenerate and that its molecular volume was shown
to be slightly larger in the 5A state (∼22 Å3) than in the 5E
state (∼20 Å3).6 Consequently, on the basis of this molecular
volume difference, the fact that the 5E state is found to be
the lowest-lying HS component of [Fe(bpy)3]2+ doped into
[Co(bpy)3](PF6)2 can be ascribed to the chemical pressure
experienced by the complex which destabilizes the 5A state
with regard to the 5E state. Note that this energy ordering of
the trigonal components of the HS state: E(5E) j E(5A), is
probably the same for [Fe(bpy)3]2+ in the confining environ-
ment provided by the supercage of zeolite Y.

3.3. High-Spin/Low-Spin Energy Difference.
3.3.1. Determination of the Change in the Spin-State
Energetics upon Encapsulation and of the Experienced
Chemical Pressure. The large number of atoms (229) of the
model system devised for investigating the guest-host
interactions in [Fe(bpy)3]2+@Y precludes the use of com-
putationally demanding high-level ab initio methods. In
contrast, with a computational cost formally identical to that
of the Hartree-Fock method, DFT methods can efficiently
be applied to the study of such large systems. However,
although they perform quite well for the study of numerous
properties of transition metal complexes,59 they tend to
dramatically fail when it comes to the accurate evaluation
of the relative energies of the different spin-states of these
systems.6,7,60-76 This failure of the current density-functional
approximations manifests itself in the present case by the
large spread of the calculated values of the HS-LS electronic
energy difference, ∆E HL

el , in [Fe(bpy)3]2+ and in
[Fe(bpy)3]2+@Y, which are given in Table 5A.

These values were obtained from the results of the
optimization calculations performed with the Gaussian pack-
age as the energy difference between the LS 1A state and
the 5A trigonal component of the HS state, to which the
results obtained using Gaussian are restricted. They range
from -811 to 10087 cm-1 for [Fe(bpy)3]2+ and from 1941
to 12004 cm-1 for [Fe(bpy)3]2+@Y. The very various
performances thus exhibited by the different XC functionals
with regard to the determination of ∆E HL

el and, more
generally, with regard to the issue of the spin-state energetics
in transition metal complexes, have been discussed in details
by different authors (see, for instance, refs 6, 61, 64, 65, 68,
70, and 74). A further discussion of this delicate issue is
beyond the scope of the present study. We rather focus on
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the change ∆(∆E HL
el ) in ∆E HL

el upon encapsulation, which is
given by

∆(∆EHL
el ))∆EHL

el [Y]-∆EHL
el [L] (3)

In the above equation, we introduce the notation X[L] and
X[Y] to refer to the values of a quantity X for [Fe(bpy)3]2+

in the gas phase and in the supercage of zeolite Y,
respectively. The values found for ∆(∆E HL

el ) are summarized
in Table 5B. There is a remarkably good consistency between
these values, which are positive and spread over the narrow
range of 1917-2934 cm-1. The positive values show that
the HS state is destabilized with regard to the LS state upon
encapsulation. Their convergence can be related to the fact
that the choice of the functional tends to have a weak
influence on the difference of two ∆E HL

el values (see ref 70).
In the present case, it also demonstrates that the different
functionals tend to perform equally well for the evaluation
of the influence of the guest-host interactions in
[Fe(bpy)3]2+@Y on the HS-LS energy difference, although
they perform very differently for the calculation of this
energy difference.

∆(∆E HL
el ) can be divided into three contributions:

∆E HL
dist{Fe}, ∆E HL

dist{Y}, and ∆E HL
int . ∆E HL

dist{Fe} is the energy
difference

∆EHL
dist{Fe})EHS

dist{Fe}-ELS
dist{Fe} (4)

where E LS
dist{Fe} (respectively, E HS

dist{Fe}) is the energy
required to bring the isolated complex in the LS (respectively,
HS) state from its relaxed geometry to its distorted geometry
at the minimum of [Fe(bpy)3]2+@Y in the LS (respectively,
HS) state. ∆E HL

dist{Y} is for the supercage the counterpart of
∆E HL

dist{Fe} for the complex.

∆EHL
dist{Y})EHS

dist{Y}-ELS
dist{Y} (5)

where E LS
dist{Y} (respectively, E HS

dist{Y}) is the energy needed
to bring the supercage from its relaxed geometry to its
geometry after the inclusion of [Fe(bpy)3]2+ in the LS
(respectively, HS) state. The contributions ∆E HL

dist{Fe} and
∆E HL

dist{Y} sum up to a global geometric distortion term,
∆E HL

dist.
The last contribution ∆E HL

int to ∆(∆E HL
el ) is the change in

the guest-host interaction energy upon the LSf HS change
of spin-states. It is given by

∆EHL
int )EHS

int -ELS
int (6)

where E LS
int (respectively, E HS

int ) is the interaction energy
between the supercage and the guest complex in the LS
(respectively, HS) state at the minimum of the whole system.
The values found at the different theoretical levels for ∆E HL

dist

and ∆E HL
int ) ∆(∆E HL

el ) - ∆E HL
dist are summarized in Table 5,

along with the values found for ∆E HL
dist{Fe} and ∆E HL

dist{Y}.
Of the two contributions, ∆E HL

dist and ∆E HL
int , to ∆(∆E HL

el ),
∆E HL

dist is the one responsible for the observed dispersion of
∼1000 cm-1 in the calculated ∆(∆E HL

el ) values. The values
found for ∆E HL

int indeed exhibit a remarkably weak to
negligible dependence on the theoretical level used and
average to ∆E HL

int ≈ 1300 cm-1. Meanwhile, the values found
for ∆E HL

dist range from 671 to 1593 cm-1 depending on the
functional used. Inspection of Table 5 also shows that
∆E HL

dist{Fe} is the major contribution to ∆E HL
dist, with ∆E HL

dist{Y}
being 4 to 7 times smaller than ∆E HL

dist{Fe}. The small positive
values found for ∆E HL

dist{Y} show that the slight structural
changes of the supercage in [Fe(bpy)3]2+@Y entailed by the
LS f HS change of spin-states and the concomitant
expansion of the [Fe(bpy)3]2+ guest translate only into a weak
destabilization of the host.

The geometric changes undergone by [Fe(bpy)3]2+ upon
encapsulation are more pronounced in the HS state than in
the LS state. The fact that the calculated values of ∆E HL

dist{Fe}
are positive (i.e., E LS

dist{Fe} < E HS
dist{Fe}) shows that these

changes are also more destabilizing in the HS state than in
the LS state. Figure 8 gives the plots of E LS

dist{Fe} and
E HS

dist{Fe} against the ratios �LS ) rLS[Y]/rLS[L] and �HS )
rHS[Y]/rHS[L], respectively, where rΓ designates the average
iron-nitrogen bond length in the Γ manifold (Γ ) LS, HS).

One notes in Figure 8 that (a) E Γ
dist{Fe} increases with

decreasing �Γ (Γ ) LS, HS) and (b), regardless of the
considered spin-state, the calculated values of �Γ decrease
in the order: PBE > B3LYP* > HCTH > O3LYP > OLYP.
This ordering is also the one found for the LS and HS values
of the ratio Fe-N/Fe-N′ in [Fe(bpy)3]2+@Y, which gives
a measure of the predicted distortion of the geometry of the
encapsulated complex: the smaller the Fe-N/Fe-N′ ratio,
the more distorted the geometry of [Fe(bpy)3]2+ (see above).
Consequently, for a given functional, �Γ is a relevant measure
of both the shrinkage and the distortion predicted for the
geometry of [Fe(bpy)3]2+ in the Γ state upon encapsulation.

Table 5. Spin-State Energetics: Calculated Values (cm-1) of (A) the HS-LS Electronic Energy Difference ∆E HL
el in

[Fe(bpy)3]2+ and in [Fe(bpy)3]2+@Y; (B) the Change ∆(∆E HL
el ) in ∆E HL

el upon Encapsulation; (C) the Contributions ∆E HL
int and

∆E HL
dist to ∆(∆E HL

el ); and (D) the Terms ∆E HL
dist{Fe} and ∆E HL

dist{Y} into which ∆E HL
dist Divides

PBE/G B3LYP*/G HCTH/G O3LYP/G OLYP/G

(A) HS-LS electronic energy difference ∆E HL
el

[Fe(bpy)3]2+ +10 087 +3849 +141 -811 +3660
[Fe(bpy)3]2+@Y +12 004 +5925 +2687 +1941 +6594

(B) Change in ∆E HL
el upon encapsulation

∆(∆E HL
el ) +1917 +2076 +2546 +2752 +2934

(C) ∆(∆E HL
el ) ) ∆E HL

int + ∆E HL
dist

∆E HL
int +1246 +1267 +1621 +1286 +1331

∆E HL
dist +671 +809 +925 +1466 +1593

(D) ∆E HL
dist ) ∆E HL

dist{Fe} + ∆E HL
dist{Y}

∆E HL
dist{Fe} +583 +679 +571 +1181 +1291

∆E HL
dist{Y} +88 +130 +354 +285 +312
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It thus follows that E Γ
dist{Fe} increases with the predicted

degree of shrinking and distortion of the Γ geometry of
[Fe(bpy)3]2+ as measured by �Γ (Γ ) LS, HS).

Can the above correlation between the calculated values
of E Γ

dist{Fe} and �Γ (Γ ) LS, HS) be related to a particular
tendency among the functionals? As shown in Figure 9, �HS

turns out to be a decreasing function of rHS[L]. Note also in
Figure 10 that rΓ[Y] is an increasing function of rΓ[L] (Γ )
LS, HS). For the complex in the HS state, we therefore

observe the following trend among the functionals: the
calculated E HS

dist{Fe} value is larger, the longer the predicted
iron-nitrogen bond in the HS state. However, this trend is
not observed for the complex in the LS state since �LS does
not vary monotonously with rLS[L] (Figure 9). Consequently,
the influence of the choice of the XC functional on the
calculated values of E Γ

dist{Fe} and �Γ cannot be explained only
by the tendency of the functionals to give more or less long
metal-nitrogen bonds for [Fe(bpy)3]2+ in either spin state.

Figure 8. Plots of E LS
dist{Fe} against �LS (left) and of E HS

dist{Fe} against �HS (right) for the different XC functionals used: PBE/G (1),
B3LYP*/G (2), HCTH/G ((), O3LYP/G (9), and OLYP/G (b) results (lines serve to highlight the trends among the functionals).

Figure 9. Plots of �LS against rLS[L] (left) and of �HS against rHS[L] (right) for the different XC functionals used: PBE/G (1),
B3LYP*/G (2), HCTH/G ((), O3LYP/G (9), and OLYP/G (b) results (lines serve to highlight the trends among the functionals).

Figure 10. Plots of rLS[Y] against rLS[L] (left) and of rHS[Y] against rHS[L] (right) for the different XC functionals used: PBE/G (1),
B3LYP*/G (1), HCTH/G ((), O3LYP/G (9) and OLYP/G (b) results (lines serve to highlight the trends among the functionals).
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Actually, E Γ
dist{Fe} and �Γ (Γ ) HS, LS) are related not

only to the extent of the structural changes which the
complex in the Γ state must undergo to fit best into the
supercage but also to the ability of the supercage to more or
less readily host the complex in this spin state. This follows
from the fact that the guest-host interactions in
[Fe(bpy)3]2+@Y, at the origin of the structural changes
experienced by the supercage and the complex, depend on
the match between the void volume of the supercage and
the volume of the complex, for which the metal-ligand
distance provides an immediate measure. In addition, besides
its influence on the description of the complex, the choice
of the functional obviously also affects the description of
the supercage and that of the guest-host interactions in
[Fe(bpy)3]2+@Y. Therefore, the correlated variations in the
predicted values of E Γ

dist{Fe} and �Γ reflect the subtle
interplay between the influence of the functionals on the
description of the supercage, hence of its void volume, and
their influence on the description of [Fe(bpy)3]2+ in the Γ
state, hence of its volume.

We noticed that the correlation between E HS
dist{Fe} and �HS

also translates into a correlation between E HS
dist{Fe} and

rHS[L]. Such an observation implies that, in the HS state,
the variations introduced by the use of the different func-
tionals in the description of [Fe(bpy)3]2+ prevail over the
manner in which these functionals influence the description
of the supercage. The most plausible explanation is that the
volume ofthe HS complex is so large that, with its encap-
sulation, the maximum capacity of the supercage regarding
the inclusion of a tris(2,2′-bipyridine) complex is reached.
This is nicely illustrated by the plot in Figure 10 of the
predicted values of rHS[Y] against those of rHS[L]. This
tendency curve indeed has a negative curvature and presents
at large rHS[L] values a plateau which suggests for rHS[Y]
an upper limit of ∼2.202 Å. Note in passing the contrasting
positive curvature of the tendency curve obtained for the LS
complex of lesser volume by plotting the calculated values
of rLS[Y] against those of rLS[L]. We thus understand that
the shrinkage and the distortion undergone by the structure
of the HS complex are all the more pronounced (�HSV) and
destabilizing (E HS

dist{Fe}v) that, first and foremost, the predicted
gas-phase structure is expanded (rHS[L]v).

The values predicted for ∆(∆E HL
el ) with the various GGA

and hybrid approximations to the universal XC functional
average to 2445 cm-1 and present a standard deviation of
435 cm-1. As this will be emphasized later on in the analysis
of the guest-host interactions in [Fe(bpy)3]2+@Y, the
physics of the embedding of [Fe(bpy)3]2+ in zeolite Y in
either spin-state is quantitatively captured by the approximate
functionals. We therefore propose as a fair estimate of
∆(∆E HL

el )

∆(∆EHL
el )) 2500( 1000 cm-1 (7)

3.3.2. Analysis of the Guest-Host Interactions in
[Fe(bpy)3]2+@Y. To get insight into the physics of the
involved guest-host interactions, we analyzed them using
the bonding energy decomposition scheme implemented in
the ADF package.53,77 This decomposition scheme is similar
to the energy decomposition analysis proposed by Morokuma

within the Hartree-Fock approximation,78-80 and closely
follows the one introduced within DFT by Ziegler and Rauk
using the extended transition state method.81-83 It has been
successfully applied to the analysis of different bonding
situations, as recently reviewed by Bickelhaupt and Baer-
ends,77 and by Frenking and co-workers.84,85 Before giving
our results, we briefly present the physically meaningful
contributions to bonding interaction energies that are obtained
with this partitioning scheme and refer the reader to the above
reviews for detailed discussions of these contributions.

The bond dissociation energy between two fragments A
and B, in our case, [Fe(bpy)3]2+ and the supercage, is divided
into two major contributions Eprep and Eint. Eprep is the energy
necessary to promote the fragments from their equilibrium
geometry and electronic ground-state to their geometry and
electronic state in the interacting system AB. Note that, for
[Fe(bpy)3]2+@Y, we have already discussed the geometric
contributions E Γ

dist{Fe} and E Γ
dist{Y} to Eprep (Γ ) LS, HS).

As for the electronic contribution to Eprep, we are in principle
concerned with its determination only when dealing with
[Fe(bpy)3]2+@Y in the HS state. Eint is the instantaneous
interaction energy between the prepared fragments. It can
be broken down into three main components

Eint )Eelstat +EPauli +Eorb (8)

Eelstat corresponds to the classical electrostatic interaction
between the unperturbed charge distributions of the prepared
fragments, the overall density being the simple superposition
of the fragment densities. EPauli corresponds to the Pauli
repulsion, which is responsible for any steric repulsion
between the fragments. It is the energy change that arises
upon going from the simple superposition of the fragment
densities to the wave function that obeys the Pauli principle
through the antisymmetrization and normalization of the
product of the fragment wave functions. Last, Eorb is the
orbital interaction energy, that is, the energy gained by
allowing the electron density to fully relax. It potentially
includes the contributions from all conceivable stabilizing
orbital interactions (electron pair bonding, charge transfer,
polarization) and can be further decomposed into the
contributions from the irreducible representations of the
interacting system. Given that the calculations with ADF
cannot be done using the C3 symmetry of the
[Fe(bpy)3]2+@Y model, the partitioning of Eorb into the
contributions from the e and a representations is not
accessible.

The corresponding ADF calculations are single-point
calculations performed at the OLYP/S level on optimized
OLYP/G geometries. The G f S change of basis sets does
not influence the description of the spin-states energetics.
Indeed, the HS-LS energy differences obtained with these
single-point calculations are ∆E HL

el [L] ) 3049 cm-1 and
∆E HL

el [Y] ) 5836 cm-1, leading to ∆(∆E HL
el ) ) 2787 cm-1,

in excellent agreement with the OLYP/G results of Table 5.
Note that the calculations targeted at the characterization of
the HS state converged toward its 5E component.

For [Fe(bpy)3]2+@Y taken in a given geometry, the
guest-host interactions are not affected by the electronic
rearrangements within the metallic d orbitals. This can be
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concluded from the energies of LST HS vertical transitions
in [Fe(bpy)3]2+@Y, which can be calculated by considering
either the whole system or the [Fe(bpy)3]2+ subsystem only.
Thus, at the OLYP/G optimized LS geometry of
[Fe(bpy)3]2+@Y, the OLYP/S values found for the energy
of the LS f HS Franck-Condon excitation are 18 296 and
17 956 cm-1, when the calculations are performed on the
entire system and on the complex, respectively. Similarly,
at the HS geometry of [Fe(bpy)3]2+@Y, the calculated
energies of the LS r HS Franck-Condon excitation are
4375 and 4397 cm-1, respectively. The fact that the
guest-host interactions at a fixed geometry of [Fe(bpy)3]2+

@Y do not depend on the ligand-field state of [Fe(bpy)3]2+

originates from the strongly local character of vertical d-d
excitations. Given this insensitivity of the guest-host
interactions to the nature of the ligand-field state of the
complex, we can identify them as closed-shell interactions
between the first coordination sphere provided by the
bipyridine ligands and the second coordination sphere defined
by the supercage under the polarizing effects of the iron
dication.

The fact that such interactions are accurately described
by most modern XC functionals is the reason as to why there
is a remarkably good consistency between the results
obtained with the various functionals for the influence of
encapsulation on the structural, energetic (∆(∆E HL

el )) and
Mössbauer spectroscopy properties of [Fe(bpy)3]2+. The
guest-host interactions at any given geometry of
[Fe(bpy)3]2+@Y can simply be characterized in the LS
manifold. We proceeded this way for analyzing the guest-host
interactions at the LS as well as at the HS geometry of
[Fe(bpy)3]2+@Y. Table 6 summarizes the results. In either
spin-state, the attractive components of the interaction energy,
E Γ

elstat and E Γ
orb, are smaller in magnitude than the Pauli

repulsion E Γ
Pauli, but together they do more than compensate

this latter, thus leading to overall stabilizing guest-host
interactions E Γ

int < 0 (Γ ) LS, HS). One also notes that E Γ
elstat

is larger in magnitude than E Γ
orb: that is, the bonding between

the complex and the supercage in the two spin-states is more
electrostatic than covalent. Upon the LS f HS change of
spin-states, the guest-host interactions become less stabiliz-
ing, with a predicted increase of ∆E HL

int )+1249 cm-1, which
is in very good agreement with the previously determined
∆E HL

int values (Table 5).
As a consequence of the expansion of the complex upon

the LS f HS transition, the Pauli repulsion increases. This
interaction corresponds to four-electron two-orbital desta-
bilizing interactions, which are all the more destabilizing the

larger the orbital overlap. The expansion of [Fe(bpy)3]2+

indeed brings the ligands and the supercage closer to each
other, thus increasing the overlap between the molecular
orbitals (MOs) of the supercage and those of the complex.
However, the increase of the Pauli repulsion accounts only
for ∼53% of ∆E HL

int . The electrostatic and orbital interactions
both become also less attractive, and the corresponding
energy increases account for ∼25% and ∼22% of ∆E HL

int ,
respectively. The increase of the electrostatic interaction
shows that the electronic and nuclear repulsions between the
two subsystems increase with respect to the attractive
interactions between the electronic charge distribution of
one subsystem with the nuclei of the other. In passing from
the LS to the HS state, the distortions experienced by the
complex and, to a far lesser extent, by the supercage are
accompanied by changes in the energies and shapes of their
MOs. These changes, combined with the unavailability of
the decomposition of the orbital interaction into the contribu-
tions from the representations a and e, prevent determination
of the reasons as to the observed variation of the orbital
interaction.

Noticing the insensivity of the guest-host interactions to
the spin-state of [Fe(bpy)3]2+, we substituted the Fe2+ ion
with the 4d6 Ru2+ and 3d10 Zn2+ ions to assess the influence
of the nature of the transition metal dication on these
interactions.86 Thus, using the OLYP/G optimized geometry
of LS [Fe(bpy)3]2+@Y, the analysis of the guest-host
interactions in the Fe2+f Zn2+ substituted [Zn(bpy)3]2+@Y
system at the OLYP/S level gives E LS

int )-10 287 cm-1 with
E LS

elstat ) -15 569 cm-1, E LS
Pauli ) 17 697 cm-1, and E LS

orb )
-12 415 cm-1. For the Fe2+f Ru2+ substituted LS [Ru(bpy)
3] 2+@Y system, we similarly obtain E LS

int ) -10 282 cm-1

with E LS
elstat ) -15 613 cm-1, E LS

Pauli ) 17 853 cm-1, and E LS
orb

) -12 523 cm-1. For either substituted [M(bpy)3]2+@Y
system (M ) Fe, Zn), the value of the bonding energy
between the [M(bpy)3]2+ complex and the supercage and
those of its three components perfectly match those obtained
from the analysis of the guest-host interactions in the
original LS [Fe(bpy)3]2+@Y system (Table 6). This shows
that, for a given geometry of a transition metal system
[M(bpy)3]2+@Y, the interactions between the [M(bpy)3]2+

complex and the supercage depend neither on the spin state
of the transition metal dication M2+ nor on its nature.

Finally, the whole destabilization ∆(∆E HL
el ) of the HS state

with regard to the LS state upon encapsulation can be viewed
as resulting from the need to keep the decrease ∆E HL

int of the
stabilizing guest-host interactions minimal, at the expense
∆E HL

dist of increased distortions of the two moieties of
[Fe(bpy)3]2+@Y upon the LS f HS transition. The distor-
tions undergone by the complex give the dominant contribu-
tion to ∆E HL

dist (Table 5). In this respect, let us point out the
fact that, in both spin states, but especially in the HS state,
the encapsulation of [Fe(bpy)3]2+ is accompanied by large
deformations along the γ angular coordinate (Tables 1 and
3), which actually are associated with floppy modes.6 Hence,
while the sizable increase of the molecular volume of
[Fe(bpy)3]2+ entailed by the LSf HS change of spin-states
is at the origin of the influence of the encapsulation on the
spin-state energetics, the ability of the complex to thus readily

Table 6. Analysis of the Guest-Host Interactions in
[Fe(bpy)3]2+@Y in the LS and HS States: Results of
Calculations Performed at the OLYP/S Level Using the
OLYP/G Optimized LS and HS Geometries (cm-1)

E Γ
elstat E Γ

Pauli E Γ
orb E Γ

int

Γ ) LS -15558 +17442 -12158 -10275
Γ ) HS -15251 +18099 -11874 -9026

∆E HL
elstat ∆E HL

Pauli ∆E HL
orb ∆E HL

int

+307 +657 +284 +1249
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distort along such floppy modes helps moderate this desta-
bilizing influence.

3.3.3. HS-LS Energy Difference and the
Low-Temperarure Dynamics of the HS f LS Relaxation
in [Fe(bpy)3]2+@Y. Pierloot and Vancoillie recently dem-
onstrated the feasability of high-level wave function-based
calculations with the CASPT2 method and extensive basis
sets for the determination of the HS-LS electronic energy
difference in the isolated [Fe(bpy)3]2+ complex, as well as
in other iron(II) complexes of similar size.69,75 Their studies,
based on single-point CASPT2 calculations on DFT-
optimized LS and HS geometries, led, for the gas-phase value
of ∆E HL

el in [Fe(bpy)3]2+, to the currently most accurate ab
initio estimate of69,75

∆EHL
el [L]) 3700( 1000 cm-1 (9)

Using eq 3 and the independent estimates of ∆(∆E HL
el ) and

∆E HL
el [L], we obtain for the value of ∆E HL

el in the zeolite-Y
encapsulated complex a best ab initio estimate of

∆EHL
el [Y]) 6200( 1500 cm-1 (10)

The comparison of the calculated ∆E HL
el [Y] values given in

Table 5A with the above estimate shows that there is a
remarkably good agreement for the results obtained with the
OLYP and B3LYP* functionals. This follows from the fact
(i) that these two functionals perform well for the determi-
nation of ∆E HL

el [L] in [Fe(bpy)3]2+, as also previously
reported,6,67,69,75 and (ii) that the different functionals give
∆(∆E HL

el ) values that are very consistent with one another.

The low-temperature dynamics of the HSf LS relaxation
in the [Fe(bpy)3]2+@Y compound are determined by the
HS-LS zero-point energy difference ∆E HL° [Y]. This one
divides into an electronic contribution, ∆E HL

el [Y], whose
predicted value is given above, and a vibrational contribution,
∆E HL

vib[Y]. Within our approach to the theoretical study of
[Fe(bpy)3]2+@Y, the determination of this latter contribution
rigorously requires that a vibrational analysis be performed
for the whole model system in the LS and in the HS state.
However, given that the supercage is hardly affected by the
structural changes undergone by the complex upon the LS
f HS change of spin states, this computationally demanding
task is avoided by considering the supercage as being rigid
and, afterward, by taking ∆E HL

vib[Y] as being caused by the
shifts in the vibrational frequencies centered on the encap-
sulated complex upon the LS f HS change of spin-states.
Because of the weakening of the metal-ligand bond in
passing from the LS to the HS state, ∆E HL

vib[Y] is negative.
Furthermore, the structure of the encapsulated complex in
either spin-state remaining close to that of the isolated
complex in the same spin manifold, it is reasonable to assume
that ∆E HL

vib[Y] is comparable in magnitude to ∆E HL
vib[L], the

vibrational contribution to the HS-LS zero-point energy
difference of the isolated complex. A value of ∆E HL

vib[L] )
-875 cm-1 was previously reported.6 Actually, |∆E HL

vib[Y]|
is probably slightly smaller than |∆E HL

vib[L]| because the
shrinkage of the structure of the complex entailed by the
encapsulation is larger in the HS state than in the LS state.
We therefore propose for ∆E HL

vib[Y] a model value of

∆E HL
vib[Y] ) -800 cm-1. This gives for ∆E HL° in

[Fe(bpy)3]2+@Y a best estimate of

∆EHL
◦ [Y]) 5400( 1500 cm-1 (11)

On the basis of the HSf LS relaxation theory,7 we could
deduce from this ∆E HL° [Y] value that the lifetime τHS[Y] of
the metastable HS state in [Fe(bpy)3]2+@Y is below 10 ns.

4. Concluding Remarks

The application of DFT to the study of the guest-host
interactions in [Fe(bpy)3]2+@Y within a supramolecular
approach allowed us to gain major new insights into the
nature of these interactions and into their influence on the
structural, energetic and Mössbauer spectroscopy properties
of the complex in the LS and HS states. The main results
and conclusions are summarized below.

(1) Guest-Host Interactions. The guest-host interactions
at a given geometry of [Fe(bpy)3]2+@Y do not depend
on the spin state of the complex. We ascribed this to
the fact that the vertical d-d excitations involved in
a change of ligand-field states have a strongly local
character. By substituting Fe2+ with Ru2+ and Zn2+,
we also showed that varying the nature of the
transition metal dication does not affect the guest-host
interactions. These interactions are closed-shell inter-
actions between the first coordination sphere provided
by the 2,2′-bipyridine ligands and the second coordi-
nation sphere defined by the supercage under the
polarizing effects of the transition metal dication. They
are accurately described by most modern functionals,
and in this respect, the different GGA (PBE, HCTH,
OLYP) and hybrid (B3LYP*, O3LYP) functionals
used very consistently predict an increase in the
interaction energy of ∆E HL

int ≈ 1300 cm-1 upon the
LS f HS transition.
The analysis of the guest-host interaction energy at

the LS and HS geometries of5 [Fe(bpy)3]2+@Y
showed that these interactions are stabilizing and that
the resulting bonding is more electrostatic than
covalent. In passing from the LS to the HS state, there
is an increase of the Pauli or steric repulsion, which
is expected from the expansion of the complex upon
this change of spin states. The Pauli repulsion however
contributes only to about half of ∆E HL

int . The electro-
static and orbital interactions also become less stabi-
lizing and their increases contribute almost equally to
the remaining part of ∆E HL

int .
(2) Structural Properties. Our results show that, upon

encapsulation, the structure of the complex shrinks and
distorts to an extent which increases in passing from
the LS to the HS state. The supercage also undergoes
geometric changes so as to host the [Fe(bpy)3]2+

complex, but its structure turns out to hardly evolve
upon the LS f HS change of spin-states and the
concomitant expansion of its guest. A relevant measure
of the structural changes experienced by the complex
proves to be the ratio �Γ ) rΓ[Y]/rΓ[L], where rΓ is
the average iron-nitrogen bond length in the Γ state
(Γ ) LS, HS). The smaller the ratio, the more
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pronounced the structural changes. Because of the
approximate nature of the functionals used, the
calculated geometries exhibit small but noticeable
differences, and varying degrees of distortion and
shrinkage are observed. In either spin state, these last
ones are found to increase with the functionals in the
order PBE < B3LYP* < HCTH < O3LYP < OLYP.
Still, the shrinkage and distortion experienced by the
complex in either spin state are not such that this
translates into a sizable variation of the quadrupole
splitting ∆EQ at the iron center.

(3) 57Fe Quadrupole Splitting. The values of ∆EQ in LS
and HS [Fe(bpy)3]2+ and [Fe(bpy)3]2+@Y were ob-
tained from the results of relativistic EFG calculations
performed at the OLYP level within the ZORA and
ZORA-4 approximations on the different optimized
geometries. The two relativistic approximations give
very similar results and the remarkable consistency
observed among the results of EFG calculations
performed with the OLYP and PBE functionals
suggests that the choice of the XC functional has a
negligible influence on the results.87 For
[Fe(bpy)3]2+@Y, ∆EQ could accurately be calculated
by considering the [Fe(bpy)3]2+ subsystem only. The
contribution of the outer coordination sphere to the
EFG at the iron center was indeed shown to be
vanishing. The main trend observed in both spin-states
is that, as a consequence of the shrinking and distortion
undergone by the complex, the quadrupole splitting
increases in passing from the isolated complex of D3

symmetry to the encapsulated complex of C3 sym-
metry: ∆EQ[L] < ∆EQ[Y].

The increase of ∆EQ upon encapsulation depends on
the predicted degree of shrinking and distortion
experienced by the complex. In the LS state, ∆EQ[L]
= -0.38 mm s-1 and ∆EQ[Y] varies between -0.37
and -0.32 mm s-1 depending on the functional used
in the optimization calculations. In the HS state, we
have ∆EQ[L] = 1.33 mm s-1 and ∆EQ[L] = -2.68
mm s-1 for [Fe(bpy)3]2+ in the 5E and 5A HS states,
respectively. For HS [Fe(bpy)3]2+@Y, the EFG could
be calculated for the 5E state only, and this gives
∆EQ[Y] values of between 1.37 and 1.40 mm s-1

depending on the considered HS geometry. For the
complex in the 5A state, we expect similar increases
of the quadrupole splitting upon encapsulation. De-
isenroth et al. determined for the HS complex in the
[Co(bpy)3](PF6)2 matrix |∆EQ| ) 1.17 mm s-1.3 The
good agreement between this value and those deter-
mined for the complex in the 5E state shows that this
state is the lowest-lying component of the HS state
for [Fe(bpy)3]2+ doped into [Co(bpy)3](PF6)2. The
molecular volume of [Fe(bpy)3]2+ is slightly larger in
the 5A state than in the 5E state and the two HS states
are nearly degenerate in the isolated complex.6 Con-
sequently, the energy ordering observed for the two
components of the HS state in the [Co(bpy)3](PF6)2

matrix can be ascribed to the chemical pressure exerted
by the environment, which destabilizes the 5A state

with respect to the 5E state. Given the confining
environment provided by the supercage of zeolite Y,
we expect this same energy ordering in
[Fe(bpy)3]2+@Y.

(4) Spin-State Energetics. The XC functionals used per-
form very differently for the determination of the
HS-LS energy difference ∆E HL

el in both [Fe(bpy)3]2+

and [Fe(bpy)3]2+@Y. However, thanks to their con-
verging performances for the accurate description of
the guest-host interactions in [Fe(bpy)3]2+@Y, they
perform very similarly for predicting the change of
this energy difference upon encapsulation: ∆(∆E HL

el )
) +2500 ( 1000 cm-1.
Of the two components ∆E HL

int and ∆E HL
dist of ∆(∆E HL

el ),
the latter is the one responsible for the uncertainty in
the determination of ∆(∆E HL

el ). While ∆E HL
int ≈ 1300

cm-1 at all levels, the calculated values of
the geometric contribution ∆E HL

dist noticeably depend
on the functionals used (Table 5). ∆E HL

dist ) E HS
dist -

E LS
dist, where E Γ

dist is the energy needed to bring the Γ
complex and the supercage from their gas-phase
geometries to their geometries in Γ [Fe(bpy)3]2+@Y
(Γ ) LS, HS). The calculated E Γ

dist values increase
with the degree of shrinkage and distortion predicted
for the complex in a given spin state. Their dispersion
reflects the varying errors made with the different
functionals in describing both subsytems at and in the
vicinity of the minima of their potential energy
surfaces. The propagation of this dispersion to the
calculated ∆E HL

dist values shows that the errors made
in determining E LS

dist and E HS
dist with a given functional

tend to only partly compensate when it comes to
evaluate ∆E HL

dist. This implies that improving the
accuracy in the determination of ∆(∆E HL

el ) requires the
use of functionals which accurately describe the
geometries of transition metal complexes in different
spin-states. Note that the ∆(∆E HL

el ) values obtained
with the very various functionals used actually average
to 2445 cm-1 with a standard deviation of σ ) 435
cm-1. Consequently, improving the accuracy of the
description of the geometries of [Fe(bpy)3]2+ in both
spin states should not lead to a significant change in
the ∆(∆E HL

el ) best estimate of 2500 cm-1, but rather
mainly help reduce the uncertainty of (1000 cm-1

(i.e., ∼2σ) put on this value.
Finally, from our calculated ∆(∆E HL

el ) value and the
CASPT2 estimate of ∆EHL

el in the isolated complex,69,75

∆E HL
el [L] ) 3700 ( 1000 cm-1, we could obtain for

∆E HL
el in [Fe(bpy)3]2+@Y a best ab initio estimate of

∆E HL
el [Y] ) 6200 ( 1500 cm-1. Our supramolecular

approach to the study of the guest-host interactions
in [Fe(bpy)3]2+@Y and their influence on the physi-
cochemical properties of [Fe(bpy)3]2+ allowed us to
quantitatively capture the whole picture. The conclu-
sions thus drawn regarding the influence of the
confining environment provided by the supercage on
the relative energies of the ligand-field states of
[Fe(bpy)3]2+ readily extend to other [M(bpy)3]2+@Y
systems. This immediately follows from the insensi-
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tivity of the guest-host interactions, at a given
geometry of [M(bpy)3]2+@Y, to the nature of the
transition metal cation. So, upon the encagement of a
dn [M(bpy)3]2+ complex, a ligand-field state originating
from a t2g

n-p-1e g
p+1 configuration will be destabilized

with regard to a ligand-field state originating from the
t2g
n-pe g

p (p e n-1). Indeed, the equilibrium geometry
of the complex is more expanded in the former state
than in the latter. However, given that the equilibrium
geometries of the complex in these states depend on
the nature of the transition metal, the variations of the
relative energies of the ligand-field states can only be
determined through dedicated studies. Our supramo-
lecular approach is thus being applied to the study of
[Co(bpy)3]2+@Y to determine how the guest-host
interactions turn the intermediate-field [Co(bpy)3]2+

complex with usually a HS ground-state into a spin-
crossover system.

This approach can be applied to the study of the physico-
chemical properties of zeolite-Y encapsulated complexes
other than tris(2,2′-bipyridine) complexes. For instance, it
would help rationalize the observation made by Maruszewski
et al. that the encapsulation entails an increase in energy of
the excited d-d quencher state in [Ru(bpy)3]2+ but also in
other Ru(II) polypyridine complexes of similar size.90 But,
more generally, it can be used to address the prediction of
the influence of the environments provided by different
hosting cavities on the physicochemical properties of a given
complex. In this respect, zeolites provide cavities of very
various sizes and shapes.91,92 Metal-organic frameworks
(MOFs) are also appealing porous materials,93-96 Alkordi
et al. having recently reported the encagement of metal-
loporphyrins into a zeolite-like MOF.97 Hence, there is a
wide applicability of the supramolecular approach used for
investigating [Fe(bpy)3]2+@Y, which makes it quite promis-
ing for exploring and tailoring the properties of inclusion
compounds of transition metal complexes.

Acknowledgment. This work has benefited from the
financial supports of the Swiss National Science Foundation
and the MAGMANet NoE of the European Union (contract
NMP3-CT-2005-515767-2). We acknowledge supercomputer
time at the Centro Svizzero di Calcolo Scientifico (CSCS)
in the framework of the CSCS project entitled “Photophysics
and Photochemistry of Transition Metal Compounds: Theo-
retical Approaches”. We also warmly thank Claudio Redaelli
and Maria Grazia Giuffreda of the CSCS for valuable
technical support and Bob Hanson for his valuable support
in the use of the Jmol program.

Supporting Information Available: Influence of the
starting geometry on the outcome of the geometry optimiza-
tion of [Fe(bpy)3]2+@Y, influence of the choice of the
functional on the calculation of the quadrupole splitting, LS
and HS geometries of [Fe(bpy)3]2+@Y calculated at the
OLYP/G level and scripts which allow their visualization
using the Jmol program. This material is available free of
charge via the Internet at http://pubs.acs.org.

References

(1) Hauser, A. Top. Curr. Chem. 2004, 234, 155–198.

(2) Hauser, A. Chem. Phys. Lett. 1990, 173, 507–512.

(3) Deisenroth, S.; Hauser, A.; Spiering, H.; Gütlich, P. Hyperfine
Interact. 1994, 93, 1573–1577.

(4) Schenker, S.; Hauser, A.; Wang, W.; Chan, I. Y. Chem. Phys.
Lett. 1998, 297, 281–286.

(5) Hauser, A.; Amstutz, N.; Delahaye, S.; Sadki, A.; Schenker,
S.; Sieber, R.; Zerara, M. Struct. Bonding (Berlin) 2004, 106,
81–96.

(6) Lawson Daku, L. M.; Vargas, A.; Hauser, A.; Fouqueau, A.;
Casida, M. E. ChemPhysChem 2005, 6, 1393–1410.

(7) Hauser, A.; Enachescu, C.; Lawson Daku, M.; Vargas, A.;
Amstutz, N. Coord. Chem. ReV. 2006, 250, 1642–1652.

(8) Gawelda, W.; Pham, V.-T.; Benfatto, M.; Zaushitsyn, Y.;
Kaiser, M.; Grolimund, D.; Johnson, S. L.; Abela, R.; Hauser,
A.; Bressler, C.; Chergui, M. Phys. ReV. Lett. 2007, 98,
057401.

(9) Nishikiori, S.; Yoshikawa, H.; Sano, Y.; Iwamoto, T. Acc.
Chem. Res. 2005, 38, 227–234.

(10) Sugi, M.; Matsumoto, Y.; Kimura, N.; Komatsubara, T.; Aoki,
H.; Terashima, T.; Uji, S. Phys. ReV. Lett. 2008, 101, 056401.

(11) Espallargas, G. M.; Brammer, L.; Allan, D. R.; Pulham, C. R.;
Robertson, N.; Warren, J. E. J. Am. Chem. Soc. 2008, 130,
9058–9071.

(12) Sampathkumaran, E. V.; Dhar, S. K.; Malik, S. K. J. Phys.
C: Solid State Phys. 1987, 20, L53–L56.

(13) Lawson Daku, L. M.; Hagemann, H. Phys. ReV. B 2007, 76,
014118.

(14) Gol’tsov, Y. G. Theor. Exp. Chem. 1999, 35, 183–197.

(15) Payra, P.; Dutta, P. K. In Handbook of Zeolite Science and
Technology; Auerbach, S. M., Carrado, K. A., Dutta, P. K.,
Eds.; Marcel Dekker Publishing: New York, 2003, pp 1-19.

(16) DeWilde, W.; Peeters, G.; Lunsford, J. H. J. Phys. Chem.
1980, 84, 2306–2310.

(17) Herron, N. Inorg. Chem. 1986, 25, 4714–4717.

(18) Quayle, W. H.; Peeters, G.; De Roy, G. L.; Vansant, E. F.;
Lunsford, J. H. Inorg. Chem. 1982, 21, 2226–2231.

(19) Umemura, Y.; Minai, Y.; Tominaga, T. J. Chem. Soc., Chem.
Commun. 1993, 1822–1823.
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Abstract: A gradient projection algorithm is presented that permits the application of several
constraints during geometry optimization on electronic potential energy surfaces (PES) or conical
intersection (CI) seams. The algorithm generalizes the idea recently published in this journal
(Sicilia et al. J. Chem. Theory Comput. 2008, 4, 257) for the optimization of conical intersection
geometries. Singular value decomposition is used to transform all constraints, including those
related to maintaining the CI, to a new set of constraints with orthogonal gradients. The constraints
need not be satisfied at the initial geometry but will be upon convergence. A procedure is
presented that determines relaxed energy paths (REP) connecting two reference structures on
a potential energy surface, or the conical intersection space, without the need to assign an
internal coordinate as the reaction coordinate. Examples are presented of optimizations of
minimum energy structures and REPs in the CI space and REPs on a single electronic PES.

1. Introduction

During the last two decades it has been increasingly
recognized that conical intersections (CIs) play a decisive
role in many photochemical reactions.1 This has also led to
much interest in calculating the geometries of critical points
within the conical intersection subspace. The algorithms
developed so far can be roughly grouped into three families:
Techniques that minimize a Lagrangian including the
constraints to maintain the degeneracy of the crossing
states,2-8 gradient projection techniques,9-14 and a method
using a penalty function.15 Recently, a comparison of these
three techniques has been performed employing a semiem-
pirical Hamiltonian.16 This study found that the Lagrange-
Newton technique needed the smallest number of iterations
to converge to the minimum energy point of the conical
intersection. The gradient projection technique needed usually
more iterations but converged to the same result, whereas
the penalty function method frequently converged to a
slightly different geometry and energy. Based on the
convergence performance, the Lagrange-Newton method

should be the first choice. However, as discussed in refs 16
and 17, Newton-Raphson programs usually employed in
quantum mechanical programs cannot be easily adapted to
this technique, whereas the modifications required by the
projection technique are straightforward. Also, the Hessian
of the Langrangian function has negative eigenvalues for
each constraint. Hence the popular Broyden-Fletcher-Gold-
farb-Shanno (BFGS) update formula18 for positive definite
Hessian matrices cannot be used.

Recently, Sicilia et al. published a modified version17 of
the gradient projection technique that showed greatly im-
proved convergence properties compared to the original
technique of Bearpark et al.9 (which was the one used in
the comparative study mentioned above).16 This modified
method was also used in combination with a projection
technique19 that imposes a geometry constraint by using only
that part of the search direction which is perpendicular to
the gradient of the constraint. As a consequence the constraint
will be fixed at the initial value. In this way points on a
relaxed energy path (REP) within the conical intersection
space were calculated. Apparently the method by Sicilia et
al.17 treats the constraints associated with maintaining the
degeneracy between two electronic states differently from
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an additional geometrical constraint. Care has to be taken to
avoid cancelation errors that can arise when the gradient
vector of the constraint is not orthogonal to the branching
space.19

Here we present a generalization of the principle idea of
ref 17 with the following properties:

1) All constraints, including those pertaining to the conical
intersection, are treated in the same fashion. The algorithm
can also be used for constrained optimization on a single
electronic state, or for a triple degeneracy.

2) Several constraints on structural parameters (bond
lengths, bond angles, or dihedral angles) or other functions
of geometry (e.g., moments of inertia) can be specified at
the same time.

3) A constraint can be any linear or nonlinear function of
geometrical parameters for which the gradient can be
calculated. For example, the projection of the geometry onto
the difference vector between two reference structures can
be fixed. This will lead to the REP between these two
structures without the need to identify a prominent internal
coordinate as the reaction coordinate.

4) The algorithm avoids problems associated with the fact
that the projected Hessian does not have full rank.

5) The constraints need not be satisfied by the initial
geometry but will be met upon convergence.

2. Outline of the Constrained Optimization
Method

We begin with a brief review of the recent algorithm of
Sicilia et al.17 The aim is to minimize the average energy of
two electronic states

F) 1
2

(E1 +E2) (1)

subject to the two constraints

C(1) ) (E1 -E2)) 0 (2)

C(2) )H12 ) 0 (3)

where H12 is the interstate coupling matrix element. Both
energies and the interstate coupling matrix element are
functions of a set of N geometrical variables r )
{x1, x2, · · · , xN}. The original gradient projection method of
Bearpark et al.9 makes steps along the direction of a modified
gradient

gM )Pg0 +
2(E1 -E2)

|g(1)|
g(1) (4)

In this expression, g0 is the gradient of F with respect to r,
g(j) is the gradient of the constraint C(j), and P is a projection
operator that projects the component of g0 perpendicular to
the plane spanned by g(1) and g(2).

The recent improvement of this technique makes use of
the Hessian matrix H of the problem. The algorithm switches
between two modes, depending on the size of the energy
difference. If this is larger than a given threshold, the gradient
of eq 4 is used to calculate the step d according to

d)-H-1gM (5)

When the energy difference is below the threshold, the
modified Hessian

HM )PHP+ (1-P)A(1-P) (6)

is used, where A is a diagonal matrix with large diagonal
elements. The procedure remedies the fact that the projected
Hessian PHP has rank N - 2 and can hence not be inverted.
The step is given by

d)-HM
-1(Pg0)+

E1 -E2

|g(1)|2
g(1) (7)

In summary: above the threshold, the gradient of the energy
difference is added to the projected gradient of the function
F to be optimized, and the full Hessian is used. Below the
threshold, the projected and rank-corrected Hessian is used,
and a term proportional to the gradient of the energy
difference is added to the step. Only E1 - E2 and g(1) are
used in eqs 4 and 7, i.e., the step or gradient are not modified
for nonvanishing H12 or g(2).

When a further constraint is added to these equations, care
must be taken to ensure that application of the constraint
leaves the projected gradient of the optimized function Pg0

orthogonal to the gradient of the energy difference, g(1). This
is important to ensure that upon minimization of the gradient
gM not only the sum of both terms goes to zero but also
each term separately.19 When the various gradient vectors
g(k) are not orthogonal, their corresponding projection opera-
tors

P(k) ) 1- g(k)g(k)T

|g(k)|2
) 1- e(k)e(k)T (8)

do not commute. (The superscript T indicates the transposed
vector or matrix, and e indicates a unit vector.) It was
concluded in ref 19 that the direction of the gradient of the
additional constraint must be projected from g0, g(1), and g(2)

prior to forming the projected gradient Pg0 of eq 4.
Apparently the result will depend on the order in which
projections are applied when several constraints are imposed
and the corresponding gradients are not orthogonal.

Our generalization of the algorithm, which will be
described next, avoids this problem. Our method is applicable
to a generalized form of eq 1 for the definition of the
optimized function, e.g.

F) 1
m∑

j)1

m

Ej (9)

With m ) 1 a single electronic state is optimized, whereas
m ) 2 or m ) 3 correspond to a double or triple degeneracy.
This involves (m - 1) constraints for the energy differences
and m(m - 1)/2 constraints for the coupling matrix elements
between all of these states. In addition to these, further
constraints can be applied, e.g. on internal coordinates (bond
lengths, bond angles, dihedral angles) or more generalized
coordinates as discussed in the next section. We define a
matrix G whose columns are given by the gradient vectors
of all constraints that should be satisfied

G) {g(1), g(2), · · · , g(L)} (10)

Gradient Projection Algorithm J. Chem. Theory Comput., Vol. 5, No. 1, 2009 117



Gjk )
∂

∂xj
C(k) (11)

The first two are those given in eq 2; the other can be
constrained internal coordinates or other functions of the
coordinates of the molecule. The dimension of this matrix
is N × L, where N is the number of geometrical variables,
and L is the number of constraints. We assume that the
number of constraints is smaller than the number of variables,
i.e. L < N. Next this matrix is decomposed by singular value
decomposition (SVD) according to

G)USVT (12)

This decomposition is always possible, and efficient numer-
ical algorithms exist. The matrices on the RHS of eq 12 have
the following properties: Matrix S is a diagonal L × L matrix
with positive elements. In the following we assume that they
are arranged in descending order. Matrix U is a N × L matrix
whose columns are normalized and orthogonal to each other.
Finally, matrix V is an orthogonal L × L matrix, i.e.

UTU)VTV)VVT ) 1 (13)

The column vectors of U thus form an orthonormal basis
for the set of gradient vectors g(k). The number of diagonal
elements for which the ratio Sm/S1 is above a certain threshold
can be considered as the effective rank of G, and all basis
vectors u(k) for which this ratio is smaller than the threshold
are neglected.20 For this (potentially reduced) set of vectors
the matrix S can be inverted, and eq 12 can be rewritten as

U)GVS-1 (14)

Next we define linear combinations of the original constraints
as

B(m) )∑
j)1

L

C(j)Vjm (15)

Their gradients are given by

∂

∂xk
B(m) )∑

j)1

L
∂

∂xk
C(j)Vjm )∑

j)1

L

GkjVjm ) SmUkm (16)

Thus the column vector u(m) gives the direction of the
gradient of B(m), and Sm is its length. In summary, the set of
nonorthogonal gradient unit vectors e(j) ) g(j)/|g(j)|, gradient
lengths |g(j)|, and constraints C(j) has been transformed to an
orthogonal set {u(m), Sm, B(m)} from which linear dependencies
have been removed.

The set of vectors u(m) is now split into two: Set 1 contains
those vectors for which B(m)/Sm is below a given threshold,
and set 2 contains the remaining vectors. Also, two projection
operators are defined

P) 1-UUT (17)

P(1) ) 1-U(1)U(1)T (18)

Thus P projects onto the orthogonal complement of the
subspace of all constraints, whereas P(1) projects out only
the components of set 1. In analogy to the method of ref 17,
the gradient of the optimized function is now modified by
first projecting out all contributions of the constraints and

then adding contributions for those constraints that are above
threshold

gS )Pg0 + 2∑
j

set2

B(j)u(j) (19)

It should be noted that the additional contribution to the
gradient would also arise if the square of the constrained
(B(j))2 should be minimized. Except for the first iteration, the
unprojected Hessian H is updated at this point by the BFGS
formula.17,18 The next step taken by the algorithm is
calculated from a modified Hessian without the contribution
of those constraints which are below threshold

HS )P(1)HP(1) (20)

Note that no term was added like in eq 6 which makes the
projected Hessian again full rank. This is not needed since
instead of inverting the matrix the equation system

HSdS )-gS (21)

is solved by a linear least-squares algorithm. This algorithm
finds the shortest vector dS that minimizes the sum of squares
|HSdS + gS|2. Finally, the step for the next iteration is calculated
by adding the contributions of the constraints in set 1 as

d) dS -∑
j

set1
B(j)

Sj
u(j) (22)

3. Relaxed Energy Paths

Relaxed energy paths (REP) connecting two critical points
are frequently calculated with the technique of a relaxed scan.
For this purpose, an internal coordinate of the system is
identified that changes monotonously and by a considerable
amount along the path between two reference structures. The
REP is then obtained by a sequence of constrained optimiza-
tions for a set of fixed values of this internal coordinate.

The gradient projection method outlined above is easily
employed for this purpose. Since the constrained variable
need not have the intended value at the beginning, each point
of the REP can be started from the previously optimized
point. This can be done for a single electronic potential
energy surface or for the intersection space of two states.

Such a scan of one internal coordinate combined with
optimization of all other coordinates requires that the
projection of the REP onto the internal coordinate varies
monotonously along the REP. This is not always the case,
and an example will be presented in the Discussion section.
Sometimes a reaction involves the collective change of
several internal coordinates none of which makes a dominant
contribution to the REP. Hence the possibility of finding a
more general approach was considered. In particular we are
interested in a strategy that connects two given points in
configuration space by a REP.

An ideal algorithm would automatically identify a geo-
metrical constraint, given by a single parameter R, such that
the optimized structure for R ) 0 corresponds to the initial
structure r1 of the REP. Optimizing the structure at R ) 1
should lead to the final structure r2 of the REP. Here two
alternatives are presented that appear suitable for this purpose.
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The first fixes the projection of the structure onto the distance
vector ∆r ) r2 - r1 between the initial and the final point of
the REP. The constraint to be minimized is then

C)
(r- r1)∆r

|∆r|2
-R (23)

This constraint involves the coordinates of the system in
absolute space. As will be shown in the application section,
this formula was successful in several cases but requires that
rotation and translation of the whole system is suppressed.
This can be simply achieved by additional constraints but
can altogether be avoided by using a constraint that makes
use only of internal coordinates of the system. Our second
proposal for a constraint is of this kind.

C) 1
Nb

∑
{ij}

dij - dij
(1)

dij
(2) - dij

(1)
- � (24)

In this expression, dij
(k) is the distance between atoms i and j

in structure k. The summation is performed over all bonds
with an absolute change |dij

(2) - dij
(1)| above a threshold, which

is usually set as a certain fraction of the largest change. Nb

is the number of these bonds. This formula is especially
useful in cases where the main contribution of the reaction
coordinate shifts from one internal coordinate to another one
along the relaxed scan. Equation 24 can easily be extended
to include other internal coordinates like bond angles or
dihedral angles.

4. Computational Details

The algorithm was coded into a FORTRAN program that
acts as an interface to the quantum chemical program
GAMESS21 optimized for the Windows operation system.22

It generates the appropriate input files, starts GAMESS, and
extracts the required energies and energy gradients from the
GAMESS output files. The constraints and their gradients
are calculated in the external program. Singular value
decomposition is performed by the routine DGESDD from
the LaPack library,23 the linear least-squares problem of eq
20 is solved by the routine DGELSD from the same library.

The program always operates on the mass- and symmetry-
weighted unique Cartesian coordinates of the system. When
the norm of the calculated geometry step was larger than a
given value dmax, the step was rescaled accordingly. Iteration
was stopped when the norm of the gradient vector and the
step were both below a certain threshold, which was set to
0.003 for all calculations in this work. The threshold on the
condition number of the gradient matrix was set such that
the vectors u(m) with Sm/S1 < 10-6 were neglected. The
threshold for including a vector in set 1 was B(m)/Sm < 5 ×
10-3. With this setting the constraints were satisfied to within
10-6-10-8 units, and energies changed by less than 10-6

Hartree during the last few steps.

5. Results and Discussion

5.1. Convergence. We have chosen the CI between S0

and S1 of fulvene as an example in order to permit
comparison with the work of Bearpark et al.19 The first

geometry of this CI reported by Dreyer and Klessinger35 has
the exocyclic CH2 group oriented perpendicular to the ring
(CIPerp). Bearpark et al.32 arrived at the same conclusion but
showed in addition that the intersection exists for all twist
angles up to the planar structure. Later it was recognized
that a C2-symmetric structure with a twist angle of ≈63°
(CI63) is ≈2.3 kcal mol-1 lower in energy.34 The relaxed
energy path connecting the planar and the perpendicular
structures on the seam has been presented in ref 19, and it
is this calculation that we take as the benchmark here. It
should, however, be mentioned that recently a C1-symmetric
structure has been presented33 that is still 0.003 kcal mol-1

lower in energy than CI63.
In our calculation, the same CASSCF(6,6)/6-31G* type

of wave function and C2 symmetry as in ref 19 was
employed. Optimizations were performed for the minimum
energy point of the CI without constraint and with the
dihedral angle between the five-membered ring and the CH2

group constrained to θ ) 0° and θ ) 90°, respectively. All
optimizations were started from the geometry of the elec-
tronic ground-state optimized at the RHF/6-31G* level.

The optimized bond lengths and angles of the three
structures are shown in Figure 1. They compare well with

Figure 1. Optimized bond lengths (Angstrom units) and
angles (in degrees) for the minimum energy point of the S0/
S1 conical intersection in fulvene without geometrical con-
straint (top), with fixed dihedral angle θ ) 0° (middle), and
with fixed dihedral angle θ ) 90° (bottom).
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those reported by Bearpark et al.19 However, we perform
separate state specific CASSCF calculations for the S0 and
the S1 states, which belong to different irreducible repre-
sentations of the C2 point group. This ensures orthogonality
of the two wave functions but allows for different optimized
orbitals. As a consequence, our energies are slightly lower
than those reported in ref 19.

Each optimization was repeated three times with the setting
of the maximum allowed step size dmax successively increased
by a factor of 3, beginning with dmax ) 0.1 Å. The observed
convergence behavior is shown in Figures 2-4.

Without geometrical constraint and with the smallest
allowed step size dmax ) 0.1 Å (upper panel in Figure 2),
the degeneracy is found after 12 steps, with the energy
difference below 1 mH from this point on. Convergence
requires 58 more steps during which the energy of both states
relaxes by 36 mH. When the smallest allowed step size is
increased to dmax ) 0.3 Å (middle panel in Figure 2), the
degeneracy is again found after 12 steps within 1 mH.
However, the energies show large oscillations during the first
few steps, which can even bring the A-state considerably
above the B-state. Convergence is reached after a total of

47 steps, with almost the same energy (6 µH lower) than in
the previous run. Interestingly, with an even larger value of
dmax ) 0.9 Å (lower panel in Figure 2) convergence to the
degeneracy is already reached after 3 steps, and the initial
oscillations disappear. The final energy after 48 steps is 2
µH lower than in the previous case, and the splitting of the
states amounts to 6 × 10-8 H.

A similar behavior is observed for the optimization with
the dihedral angle θ ) 0° fixed (Figure 3). Convergence is
slow but smooth with dmax ) 0.1 Å, it becomes faster but
shows initial oscillations with dmax ) 0.3 Å, and performs
best with dmax ) 0.9 Å, requiring only 17 steps. The fast
convergence is mainly due to the fact that the fixed dihedral
angle had initially already the required value.

However, the algorithms performs also well when the
dihedral angle is initially far away from the target value, as
seen in Figure 4 for the target θ ) 90°. With a small step
size the simultaneous optimization toward ∆E ) 0 and θ )
90° apparently leads into a structural region where the energy
is much too high, but the algorithm finally finds its way down
to the optimized perpendicular structure of fulvene. The
escape in that unfavorable region is much shorter when larger
steps are allowed (dmax ) 0.3 Å, middle panel in Figure 4),

Figure 2. Convergence behavior of the algorithm for optimi-
zation of the S0/S1 conical intersection in fulvene without
geometrical constraint. Three different values for the norm of
the largest step dmax were used. Full and open symbols
represent ground-state and excited-state energies, respectively.

Figure 3. Convergence behavior of the algorithm for optimi-
zation of the S0/S1 conical intersection in fulvene with fixed
dihedral angle θ ) 0°. Three different values for the norm of
the largest step dmax were used. Full and open symbols
represent ground-state and excited-state energies, respectively.
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and convergence is again fastest with the largest allowed
step size of dmax ) 0.9 Å (lower panel in Figure 4).

As a common feature of all these convergence studies one
observes that convergence is smooth once the degeneracy
has been reached to within a few mH. Only in one case
(lower panel of Figure 2) two short excursions (one step
each) occurred into an unfavorable region of the PES before
the system continued to convergence. In this case very large
steps (0.9 Å) were permitted. It might be that in this case
the Hessian was not yet well balanced after only 20 updates.
In the early phase of the optimization where the two states
are widely apart, oscillations and excursions in highly excited
regions are more frequent, especially when large step sizes
are permitted. Hence one can expect even better convergence
behavior when the maximum allowed step size is dynami-
cally adjusted according to the splitting of the states and the
success of the previous steps taken by the algorithm.

The algorithm does not always go easily to the conical
intersection of interest when started from a point far away.
E.g., the optimization of the S0/S1 conical intersection of
benzene seems to depend strongly on the precise structure
used as the starting point. Using different distortions from

the ground-state structure as starting structures our algorithm
optimized to various local minima of the CI. This might be
improved by using a more sophisticated guess for the initial
Hessian (in this paper a diagonal matrix is used throughout)
or dynamically adjusting the trust radius for the Newton-
Raphson step. Alternatively, the degeneracy of interest can
be located quickly by an algorithm based on the idea of
Longuet-Higgins loops.24 For the discussion of the underly-
ing principles see refs 25-29. As an example a CASSCF(8,7)/
DZV calculation of the S0/S1 conical intersection of benzene
is shown below.30 This CI is encircled by a loop that has
benzene and two of its benzvalene isomers as its anchors.26

The structure of the transition state between the two
benzvalene isomers is shown in Figure 5. It has A′′ symmetry
in the CS point group. Classifying the states of benzene with
reference to the same mirror plane, the ground-state has A′
symmetry. Along a path between these two structures that
conserves the mirror plane the two states must hence cross.
This crossing is located within three steps by a bisection
algorithm as shown in the upper part of Figure 6. Since this
algorithm does not require gradients, each iteration is even
faster than those of the optimization algorithm. Starting from
this structure the present algorithm smoothly converges to

Figure 4. Convergence behavior of the algorithm for optimi-
zation of the S0/S1 conical intersection in fulvene with fixed
dihedral angle θ ) 90°. Three different values for the norm of
the largest step dmax were used. Full and open symbols
represent ground-state and excited-state energies, respectively.

Figure 5. Structures of the optimized S0/S1 conical intersec-
tion (CI) of benzene and the transition state (TS) between
two benzvalene isomers. Bond lengths are given in Ang-
stroms, bond angles in degrees.
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the optimized structure of the CI while maintaining the
degeneracy within less than 0.3 mH, as seen in the lower
part of Figure 6. The structural parameters of the optimized
CI are given in Figure 5. They compare well with those
presented in the first report on this CI by Palmer at al.31

5.2. Relaxed Energy Paths. As first example we present
calculations of the REP connecting the planar and perpen-
dicular transition states on the intersection space for the CI
between S0 and S1 of fulvene. The same basis and active
space as in the previous section was used. The REP was
calculated along the torsional coordinate θ (19 equidistant
points with 5° distance) and also along the path coordinate
R defined in eq 23 (21 points with distance of 0.05). Both
runs were started from the optimized planar CI geometry
and required a total of 107 function evaluations for all points
to converge. The results are displayed in Figure 7. The upper
panel shows the energy values of the relaxed scan at fixed
values of the generalized path coordinate R defined in eq 23
(left scale). The torsional angle at the optimized points
increases monotonously with the path parameter R (right
scale). The lower panel shows the same REP, now calculated
along equidistant points with fixed torsional angle. These
data are represented by circles. The data from the scan along
R have been included in this plot at the appropriate torsional

angles and are shown as triangles. Apparently both scans
walked along the same REP.

It should be mentioned that the use of the path parameter
R requires the application of further constraints since it is
defined in terms of absolute coordinates in 3N space. Hence
a given projection of the shift r - r1 onto the difference
vector r2 - r1 between the two reference structures could
be achieved by a rotation or translation of the whole
molecule. This must be suppressed by fixing components of
the center of mass R and off-diagonal elements of the inertial
tensor I. In the present case with C2-symmetry these
conditions were Rz ) 0 and Ixy ) 0.

As a second example the tautomerization reaction on the
PES of the electronic ground-state in propandial was studied.
All calculations were performed with CASSCF(10,7)/
6-31G** wave functions. The active space consisted of the
5 valence π-orbitals and two σ-orbitals representing the O-H
bond and the oxygen lone pair, respectively. The optimized
structures of one of the two equivalent ground-state tautomers
and the transition state (TS) are shown in Figure 8. The REP
was first explored by performing a relaxed scan with the
distance r19 as the parameter (for the numbering of atoms
see Figure 8). The REP obtained in this way is shown by
the open circles in Figure 9. Beginning with the value r19 )
1.99 Å, the energy rises monotonously with smaller values
of r19 and reaches a maximum near r19 ) 1.2 Å, in

Figure 6. Upper part: Search for the crossing seam along
the coordinate defined as the linear interpolation between the
structures of benzene (1) and the transition state between two
benzvalene isomers (2). The points (3-5) indicate the steps
taken by the search algorithm to locate the degeneracy. Open
symbols represent the A′ state, full symbols the A′′ state. The
full lines represent the two electronic potential energy curves.
Lower part: Convergence of the optimization of the CI. Full
symbols: energy (in Hartree units, left scale) of the degenerate
pair of states, open symbols: Splitting of the states (in milli-
Hartree units, right scale).

Figure 7. REP connecting the planar and the perpendicular
structures of fulvene on the S0/S1 conical intersection seam.
Upper panel: Energies (left scale) and torsional angle θ (right
scale) of the optimized REP along the path coordinate R (eq
23). Lower panel: Energies of the REP as function of the
torsional angle. Circles are optimized at equidistant points
along θ, and triangles are the results of the path calculated
along the path coordinate R defined in eq 23.
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accordance with the structure of the TS. The REP then decays
quickly to the initial energy value, now at the other tautomer
of the ground state. The REP appears unsymmetric: The

change of the O-H distance amounts to 0.80 Å on one side
of the TS but only 0.24 Å at the other side. Figure 10 reveals
another problem with this type of relaxed scan. This figure
shows the projection of the path onto the plane spanned by
the two OH distances. The path mentioned above is
represented by the open circles. Beginning with r19 ) 1.99
Å the path shows only very little change in the other distance
r29, so that the reaction coordinate is well represented by
the internal coordinate r19. However, shortly after passing
through the TS, the distance r29 changes by a large amount
of 0.4 Å, whereas r19 changes by only 0.025 Å. Apparently,
in this region, r19 has only a small projection on the reaction
coordinate and is a bad choice for the parameter of a relaxed
scan. In addition, the path obtained when following r19 is
not symmetric with respect to the exchange of r19 and r29.
This becomes apparent when the data points corresponding
to the scan in the opposite direction, now with equidistant
steps in r29, is included in the plot (represented by the open
triangles). Such a symmetry is, however, expected from the
fact that the two minima correspond to equivalent structures.
Hence we conclude that the REP calculated as a relaxed scan
along either of the two O-H distance coordinates deviates
from the true REP due to the switch between the dominant
contributions of the two internal coordinates to the reactions
coordinate.

In this case the path coordinate � defined in eq 24 performs
much better. The energy profile, shown by the full circles in
Figure 9, is symmetric around � ) 0.5, which corresponds
to the TS structure. For each optimized point along this path
the pairs of distances of the hydrogen atom to both oxygen
atoms are plotted in Figure 10 as full circles. It is obvious
that this path is symmetric with respect to the exchange of
these two bond lengths. It is also seen that the point for � )
0.5 is at the crossing point of the two paths discussed before.
Hence, all three paths go through the same TS, as is also

Figure 8. Optimized structures of the electronic ground state
(top) and the transition state (bottom) of the enol form of
propandial. Bond lengths are given in Angstroms, bond angles
in degrees.

Figure 9. Energy profile on the S0 potential energy surface
connecting the two enol forms of propandial. Open circles
(upper axis): relaxed scan along r19. Full cirlces (lower axis):
relaxed scan along the path coordinate � defined in eq 24.

Figure 10. Projection of the REP between the two enol forms
of propandial onto the plane spanned by the two distances
between the migrating H-atom and the two O-atoms. Open
circles: Path followed by a relaxed scan with equidistant steps
in r19. Open triangles: Path followed by a relaxed scan with
equidistant steps in r29. Full circles: Path followed by a relaxed
scan with equidistant steps in the path coordinate � defined
in eq 24.
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apparent from the same peak height of the energy profiles
in Figure 9.

6. Conclusions

An algorithm has been presented for optimization of mo-
lecular structures subject to geometric and energetic con-
straints. The algorithm is a generalization of a recently
published method developed in particular for the optimization
of conical intersections. The two algorithms are identical for
the particular case that a conical intersection is optimized,
the interstate coupling gradient vanishes (e.g., due to
symmetry), and no additional geometrical constraints are
used. The algorithm presented here treats all constraints in
an equivalent way. Hence a term is added to the projected
gradient (eq 19) or the search step (eq 22) when the interstate
coupling matrix element or its gradient does not vanish. The
original algorithm adds such a term only for the energy
difference. Since the interstate coupling gradient is not
available in the GAMESS program, all examples used in
the present study were chosen such that the interstate
coupling vanishes by symmetry.

The algorithm works well with and without an additional
geometry constraint, even when the starting geometry is far
from satisfying the constraint. The algorithm apparently
tolerates rather large step sizes, and rescaling the steps to a
smaller size frequently leads to a worse performance,
although the converged results are very similar. Still better
convergence behavior can be expected from strategies that
dynamically adjust the maximum step size depending on the
performance of the previous steps.

The algorithm usually works well with a diagonal matrix
for the initial Hessian matrix, but the use of a more realistic
Hessian was also studied. E.g., when the Hessian of the RHF-
optimized ground-state of fulvene was used to initiate the
optimization of the conical intersection, a much faster
convergence was found for the full optimization and the
optimization with the constraint of θ ) 0. However,
convergence was much slower in the case θ ) 90°.
Apparently the Hessian for the planar structure is a bad guess
for the perpendicular CI structure.

Since the number of variables and the size of the Hessian
matrix are not modified, the algorithm should be easily
incorporated into existing Newton-Raphson type optimization
routines in quantum chemical programs.
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Abstract: A novel approach to empirically modeling the electronic structure of molecules is
introduced. The theory is based on relationships between molecular orbital energy components
and the average distance between electrons and electrons and nuclei. The electron-electron
and electron-nucleus distances are subsequently related to interatomic distances which provides
a means for modeling the electronic structure of molecules. The general energy expression
for a simulated electronic structure theory is defined, along with the functional form of the
interatomic distance dependent energy functions. The theory is used to model the hydrogen
molecule, the first-row hydrides, and ethane. The models, which have the correct RHF/6-31G(d)
optimized geometries, also fit the RHF/6-31G(d) energy at equilibrium and the UHF/6-31G(d)
energy at the bond dissociation limit as well as some vibrational frequencies.

1. Introduction

Molecular mechanics methods are widely used to study
problems in a variety of research fields, from nanotechnol-
ogy1 to molecular biology.2 In conventional molecular
mechanics the total energy of a molecule is divided into
different components; bond stretching, Es, angle bending, Eb,
torsional interactions, Etor, van der Waals interactions, EvdW,
and electrostatic interactions, Eelec.

3

Etot(R))Es +Eb +Etor +EvdW +Eelec (1)

Some formulations may use other energy terms to describe
phenomena, such as hydrogen bonding, that are not described
well by the existing terms. The functional form of these energy
terms and the empirical parameters that occur in the functions
are known as a force field. Given the functional form of a
molecular mechanics force field, the empirical parameters are
defined through fitting of experimental or ab initio data.

The major advantage of molecular mechanics methods
over ab initio, density functional, or semiempirical methods
is their computational efficiency. Molecular mechanics allows
for the study of large systems and dynamics, where it is
unfeasible or strictly impossible to use other approaches. The
flexibility of force fields which may be tuned to various
classes of compounds allows for quite accurate calculations.

However, on the other hand, the specificity of the force fields
makes studies on unknown compounds inaccurate and
unpredictable. This lack of transferability of specific atom-
atom interactions is due to contamination by the molecular
environment, which is, indirectly, a result of neglecting the
electronic structure. The absence of electrons and orbitals
also poses problems for chemical calculations. It is not
possible to study reaction mechanisms with molecular
mechanics or many other properties related to the electronic
structure, such as magnetic properties, excitations, electron
transport, and electrical conductivity. A partial solution to
such a problem is through a combined quantum mechanics
and molecular mechanics (QM/MM) approach.4

A hybrid QM/MM approach is common in the study of
reactions involving large systems, such as enzyme catalysis or
organic reactions in solution. The general scheme behind a QM/
MM calculation is to treat the region of interest, or importance,
with a quantum mechanical calculation, and the rest of the
system is treated with molecular mechanics. In some applica-
tions the solvent may be treated with molecular mechanics,
while the reacting molecules are treated quantum mechanically,
or for large molecules, like enzymes, the active site may be
QM, while the rest of the molecule is MM. The Hamiltonians,
and energy, of these hybrid systems are divided into QM, MM,
and QM/MM parts. How the two different regions interact, QM/
MM, is defined in several ways.5
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Since the initial appearance of molecular mechanics almost
a century ago,6 most of the development of the theory has been
focused on parametrization (i.e., developing force fields for
different classes of compounds), while the general formulation
of molecular mechanics has remained relatively the same. This
has led to accurate modeling of a wide variety of large systems
in many research fields. However, the problems associated with
the absence of electronic structure are still present. While
methods such as QM/MM provide a partial solution to such a
problem, there may be other approaches. This study explores
such an idea. Rather than the molecular mechanics approach
to molecular modeling, modeling of electronic structure is
performed. The theory presented provides a different approach
to modeling potential energy surfaces, where the energy
components associated with electron pairs and individual
electrons are functions of the nuclear coordinates.

2. Theory

2.1. Simulated Electronic Structure Theory (SEST). A
theory which includes electrons explicitly will have an energy
expression that differs significantly from conventional mo-
lecular mechanics (eq 1) and more closely resembles the
electronic Hamiltonian (eq 2, in atomic units)

Ĥe )-∑
i)1

N
1
2

∇ i
2 -∑

i)1

N

∑
A)1

M ZA

riA
+∑

i)1

N

∑
j>i

N
1
rij

(2)

where N is the number of electrons, and M is the number of
nuclei. The SEST energy expression can be expressed as a
sum of atomic contributons, Vatomic, and contributions from
atom-atom, Vatom-atom, atom-lone pair, Vatom-lone pair, and lone
pair-lone pair, Vlone pair-lone pair, interactions.

V(R))Vatomic +Vatom-atom +Vatom-lone pair +Vlone pair-lone pair

(3)

The electronic kinetic energy is included through the virial
theorem (see discussion at the end of this section). Each
energy term is further subdivided into electron-electron,
electron-nuclear, and nuclear-nuclear potential energy, V
) Vee+VNe+VNN.

The atomic energy, which does not depend on the nuclear
coordinates, accounts for the energy associated with atoms
and their own electrons. Each atom has its own electrons
corresponding to the neutral atom. The electronic configu-
ration of each atom follows a Lewis dot structure approach.
For example, a sp3 carbon atom has four unpaired, valence
electrons, and a pair of core electrons. Also, a sp3 nitrogen
atom has three unpaired valence electrons, a lone pair, and
a pair of core electrons. The atomic energy term is calculated
as a sum over the contributions of individual nuclei, Vatomic

) ∑A)1
M VA, where M is the total number of nuclei

VA )∑
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2V Aa
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V Ai
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(2- δab)V ab
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2

V ij
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µ∈ A

V µµ
ee (4)

where a and b are pairs of core electrons, i and j are valence
electrons, and µ is a lone pair. Each atom has nuclear-electron

potential energy associated with its nucleus, A, and its
electrons, VAa

Ne and VAi
Ne. Each atom also has electron-electron

potential energy due to its electrons, Vab
ee, Vai

ee, and Vij
ee as

well as the potential energy of the electrons in each of its
lone pairs, Vµµ

ee. The potential energy, Vµµ
ee, due to each lone

pair is included in the atomic energy because, like the atomic
energy, it is distance independent.

The distance dependent energy terms include Vatom-atom,
Vatom-lone pair, and Vlone pair-lone pair. The atom-atom interaction
energy is the sum of the interactions between each atom pair,
Vatom-atom ) ∑A)1

M ∑ B<A VAB(RAB)

VAB(RAB))
ZAZB

RAB
+∑

a∈ A

2V Ba
Ne(RAB)+∑

a∈ B

2V Aa
Ne(RAB)+

∑
i∈ A

V Bi
Ne(RAB)+∑

i∈ B

V Ai
Ne(RAB)+

∑
a∈ A

{ ∑
b∈ B

2V ab
ee(RAB)+∑

i∈ B

V ai
ee(RAB)} +

∑
b∈ B

∑
i∈ A

V bi
ee(RAB)+ ∑

i∈ A

(i∈ c)
{ ∑

j∈ B

(j∉ c)

1
2

V ij
ee(RAB)+ ∑

j∈ B

(j∈ c)

V ij
ee(RAB)}

(5)

where c denotes a bond between atoms A and B. This
interatomic energy includes core electron pairs and valence
electrons of one atom attracted to another, VBa

Ne, VAa
Ne, VBi

Ne,
and VAi

Ne, and potential energy between electrons of different
atoms, Vab

ee, Vai
ee, Vbi

ee, and Vij
ee. The atom-lone pair interaction

energy is given by Vatom-lone pair ) ∑A)1
M ∑µ)1

L VAµ(RAµ), where
L is the total number of lone pairs, and

VAµ(RAµ)) 2V Aµ
Ne(RAµ)+∑

a∈ A

2Vaµ
ee (RAµ)+∑

i∈ A

V iµ
ee(RAµ) (6)

There is nuclear attraction potential energy between atom A
and lone pair µ, VAµ

Ne, and electron-electron potential energy,
Vaµ

ee and Viµ
ee. The lone pair-lone pair interaction energy

consists of only electron-electron potential energy, where
Vlone pair-lone pair ) ∑µ)1

L ∑ν<µVµν.

Vµν ) 2V µν
ee (Rµν) (7)

This formulation of simulated electronic structure theory
contains no electronic kinetic energy terms. It was found
that kinetic energy terms were not required to accurately
model the systems studied thus far. However, kinetic energy,
like electron-nucleus potential energy (Section 2.2), correlates
quite well with the average distance between an electron and
a nucleus. Therefore, it is possible to include terms to model
kinetic energy in future development of the theory, if desired.
In order to calculate the energy of a molecular system, E(R),
without the kinetic energy of the electrons, it is assumed
that the virial coefficient, which is the negative ratio of the
potential and kinetic energy, cV ) -V/T, is constant over
the entire potential energy surface.

E(R))
(cV - 1)

cV
V(R) (8)

In this study the equilibrium geometries and energies of the
molecules were fit to RHF/6-31G(d) values; therefore, the
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virial coefficient is set to the value obtained from the
equilibrium geometry at RHF/6-31G(d).

2.2. The Average Interparticle Distance and Model-
ing Molecular Orbital Energy Components. Simulated
electronic structure theory models the PESs of molecular
systems, in which the energy contribution of electron pairs
and individual electrons are functions of the nuclear coor-
dinates. It is useful to obtain parameters for these models as
well as insight on how the energy contributions per electron
pair and individual electron depend on molecular geometry,
from ab initio models of electronic structure. Such properties
are easily examined at the Hartree-Fock level of theory.
The closed-shell Hartree-Fock (RHF) energy is given as

EHF )∑
a)1

N⁄2

2ha +∑
a)1

N⁄2

∑
b)1

N⁄2

2Jab -Kab (9)

where N is the number of electrons, ha is the one-electron
energy, Jab is the Coulomb energy, and Kab is the exchange
energy, associated with molecular orbitals (MOs) a and b.
The one-electron energy, ha ) Ta+Va, consists of kinetic
energy

Ta ) 〈a|-1
2

∇ 1
2|a〉 (10)

and nuclear-electron attraction potential energy

Va ) 〈a|-∑
A)1

M ZA

r1A
|a〉 (11)

The Coulomb and exchange energy are calculated from
two-electron integrals.

Jab ) 〈ab|ab〉 (12)

Kab ) 〈ab|ba〉 (13)

In recent work,7 it was found that the Coulomb energy
could be modeled with a one-electron property of MOs, the
average interelectronic distance, δr12. The Coulomb energy,
Jab, associated with any two MOs is inversely proportional
to the average distance between an electron in MO a and an
electron in MO b, (δr12)ab, which is given by

(δr12)ab ) √〈ab|r12
2 |ab〉 (14)

The relationship

Jab ≈ R
(δr12)ab

(15)

has severe deviations for the canonical MOs (CMOs) of HF
theory, due to delocalized core MO pairs. However, if
localized MOs (LMOs) are used the relationship is followed
quite closely, Figure 1.

A similar relationship has been found between the nuclear-
electron attraction potential energy, Va (eq 11), and the
average distance between an electron and a nucleus, δraA,
which is calculated analogously to (δr12)ab.

8

δraA ) √〈a|r1A
2 |a〉 (16)

The nuclear-electron potential energy, Va, may be separated
into contributions from individual nuclei, VaA, where

∑A)1
M VaA ) Va. The nuclear-electron potential energy between

MO a and nucleus A is related to δraA through the equation

VaA ≈-γ
ZA

δraA
(17)

The relationship has the same deviations for CMOs as seen
with Jab and (δr12)ab and performs quite well for LMOs,
Figure 2.

It should be noted that while the overall correlation in
Figures 1 and 2 is good, r2 ) 0.997 and 0.995 respectively,
individual deviations approach 1 hartree for the relationship
between Jab and (δr12)ab and 25 hartrees for VaA and δraA.
These errors are quite large on the scale of reaction
energetics. However, these deviations involve core MOs,
which correspond to the core electron pairs of SEST, for
which the energy terms are constant parameters and therefore
do not depend upon the above relationships. Furthermore, it
is the qualitative result, which is most relevant to an
empirically parametrized SEST. The Coulomb and electron-

Figure 1. Relationship between Coulomb energy, Jab, and
the average distance between two electrons, (δr12)ab (eq 14),
for two electron ions to molecules with up to 58 electrons
(RHF/6-31G(d), LMO). From ref 7.

Figure 2. Relationship between electron-nuclear attraction
energy, VaA, and the average distance between an electron
and a nucleus, δraA (eq 16), for two electron ions to molecules
with up to 58 electrons (RHF/6-31G(d), LMO).
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nuclear potential energy are quantities calculated from
integrating over the electronic distribution. Although as a
result of the relationships just mentioned, to some ap-
proximation electrons have average positions with respect
to each other and with respect to the nuclei. Furthermore,
these average positions, and hence distances, may be used
to approximate components of the HF energy per MO. An
immediate question following such deductions is how do
these average interparticle distances change with changing
molecular structure.

In general, the average interparticle distances, (δr12)ab and
δraA, are linearly related to interatomic distance. This
relationship is illustrated in Figures 3 and 4, with F2.

It is expected that such a relationship would be most
critical for atoms which are bonded to each other. Changing
bond length significantly affects the electronic structure of
a molecule, especially around the two bonded atoms, and
even more for a diatomic. While this may be the case, it is
seen in Figures 3 and 4 that the interparticle distances very

closely follow a linear relationship with the fluorine-fluorine
distance. However, for shorter bond lengths (<1.5 bohr) there
is slight curvature in the lone pair-lone pair (δr12)ab and lone
pair δraA curves which is due to the lone pairs on different
fluorine atoms bending away from each other as the bond
length decreases. It is also observed in both figures that
distances involving electrons in the bond show slight
curvature. In both the bond-bond (δr12)ab and bond δraA

curves, the slope is less around the equilibrium bond length
((RFF)e ) 2.54 bohr) than that at the shorter and longer RFF

distances. Nonetheless, this relationship, even as an ap-
proximation, is a powerful tool.

The ability to relate the average interparticle distances to
atomic distances has important consequences. For a given
molecular structure, not only will these relationships provide
an estimate of MO energy components but also they will
provide a means of predicting an aVerage picture of the
electronic structure.

2.3. Functional Form. It was seen in Section 2.1 that the
SEST energy expression, eq 3, contains terms which depend
on atom-atom, atom-lone pair, and lone pair-lone pair
distances. The functional form of these distance dependent
terms determines the success of applying SEST. Following
the relationships observed in Figures 3 and 4, the interparticle
distances, (δr12)ab and δrbA, are taken to be linear functions
of the interatomic distance, RAB

(δr12)ab ) λRAB + σ (18)

and

δrbA )ωRAB + κ (19)

where MO a is localized on atom A, MO b is localized on
atom B, or one of them (a or b) is the bond between A and
B, and λ, σ, ω, and κ are constants for each unique pair of
MOs. As observed in Figures 3 and 4, the relationships
involving bonding MOs are approximate. However, an exact
model of ab initio electronic structure through interatomic
distances is not the goal, neither is it possible.

The LMO potential energy components are related to the
interatomic distance through the linear relationships above
and the relationships seen earlier (Figures 1 and 2). Substitu-
tion of eq 18 into eq 15 yields

Jab ≈ R
λRAB + σ

(20)

While, substitution of eq 19 into eq 17 gives

VbA ≈
-γZA

ωRAB + κ
(21)

The above equations are used to derive the general form of
the SEST distance dependent functions.

Given electron pairs a and b, where a is localized on atom
A and b is localized on atom B, the electron-electron
potential energy between the two pairs of electrons is given
by

V ab
ee(RAB))

(V ab
ee)e((RAB)e - rab

ee)
RAB - rab

ee
(22)

Figure 3. Relationship between the average distance be-
tween two electrons, (δr12)ab, and the fluorine-fluorine dis-
tance, RFF, in F2 (RHF/6-31G(d), LMO). Includes a ) bond
b ) bond, a ) bond b ) core, a ) core b ) core, and a )
lone pair b ) lone pair (from separate nuclei).

Figure 4. Relationship between the average distance be-
tween an electron and a nucleus, δraA, and the fluorine-fluorine
distance, RFF, in F2 (RHF/6-31G(d), LMO). Includes a )
bond, core, and lone pair.
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where (RAB)e is an equilibrium interatomic distance, rab
ee is a

constant parameter, and (Vab
ee)e is the potential energy at the

equilibrium distance. Also, as the interatomic distance, RAB,
approaches infinity the potential energy term vanishes. The
SEST electron-electron potential energy function is chosen
to model the total HF electron-electron potential energy (eq
9)

V ab
ee(RAB) ≈ 2Jab -Kab (23)

although it is only the Coulomb energy, Jab, which is
inversely proportional to the average interelectronic distance,
(δr12)ab (eq 15). The functional form is derived using
localized molecular orbitals (LMOs),15 in which case the
exchange energy, Kab, is minimal. Therefore the approxima-
tion in eq 23 is considered valid. The electron-nucleus
potential energy is calculated in a similar fashion.

V Ba
Ne(RAB))

(V Ba
Ne)e((RAB)e - rBa

Ne)
RAB - rBa

Ne
(24)

While the functions given in eqs 22 and 24 are for pairs of
electrons, a and b, functions for individual electrons, i and
j, and any combination of pairs and individual electrons (e.g.
Vai

ee(RAB)) take the same form, albeit with different parameter
values. The parameters of these functions are derived from
the LMOs of the ab initio electronic structure of a molecule.

It is recognized that positive values of the parameters rab
ee,

rBa
Ne, etc., result in singularities in the potential energy surface

for positive values of RAB. While fitting a potential energy
surface, parameters with values larger than 1/2(RAB)e are
avoided, and values smaller than this threshold are dealt with
using a piecewise function.

VAB(RAB))

{ V NN(RAB)+V Ne(RAB)+V ee(RAB), if RAB > rAB
max + δ

V NN(RAB)+V Ne(rAB
max + δ)+V ee(rAB

max + δ), if RABe rAB
max + δ

(25)

VAµ(RAµ))

{ V Ne(RAµ)+V ee(RAµ), if RAµ > rAµ
max + δ

V Ne(rAµ
max + δ)+V ee(rAµ

max + δ) + if RAµe rAµ
max + δ

V ee(RAµ + ri)-V ee(rAµ
max + δ+ ri),

(26)

The largest positive value for a given atom-atom interac-
tion or atom-lone pair interaction is rmax (e.g., rAB

max )
max{rAi

Ne, rBa
Ne, rij

ee,...}). The argument RAµ+ri (eq 26) denotes
that for each given function of the form in eqs 22 and 24
the value of the specific ri parameter is added to RAµ, thus
removing ri from the denominator.

2.4. Determining the Parameters. In this study the
parameters of the distance dependent functions (eqs 22 and
24) along with the constant energy terms (eq 4) are derived
from ab initio calculations. The LMO energy components,
VaA, Jab, and Kab, are used to define the constant energy terms,
VA, and the equilibrium energy terms, (VAB)e, (VAµ)e, and
(Vµν)e. For electron pairs belonging to the same atom (core

electrons), or a lone pair, the energy is taken to be equal to
the corresponding LMO energy component. For example

(V ab
ee)e ) 2Jab

LMO -Kab
LMO (27)

and

V Aa
Ne )V aA

LMO (28)

Energy terms for individual electrons, the bonding electrons,
require the partitioning of LMO energy components. The
energy expression for ammonia may be used to illustrate an
energy partitioning scheme.

VNH3
)VN + 3VH + 3VNH + 3VHH +VNµ + 3VHµ (29)

The lone pair of nitrogen is denoted µ. The terms VN and
VH are the atomic energies of nitrogen and hydrogen,
respectively

VN ) 2V Na
Ne + 3V Ni

Ne +V aa
ee + 3V ai

ee + 3(1
2

V ij
ee)+V µµ

ee (30)

where a is the pair of core electrons of nitrogen, and i and
j denote valence electrons of nitrogen.

VH )V Hk
Ne (31)

where k is the hydrogen electron. The atom-atom interaction
energy terms are VNH and VHH

VNH )
ZNZH

RNH
+ 2V Ha

Ne(RNH)+ 2V Hj
Ne(RNH)+V Hi

Ne(RNH)+

V Nk
Ne(RNH) + V ak

ee(RNH)+ 2(1
2

V jk
ee(RNH))+V ik

ee(RNH) (32)

where a is the pair of core electrons of nitrogen, i is the
valence electron of nitrogen in this NH bond, j is a valence
electron of nitrogen not in this bond, and k is the hydrogen
electron. The hydrogen-hydrogen nonbonded interaction
energy is described as

VHH )
ZHZH

RHH
+ 2V Hi

Ne(RHH)+ 1
2

V ij
ee(RHH) (33)

Finally, VNµ and VHµ are the atom-lone pair interaction terms

VNµ ) 2V Nµ
Ne (RNµ)+ 2V aµ

ee (RNµ)+ 3V iµ
ee(RNµ) (34)

VHµ ) 2V Hµ
Ne (RHµ)+V kµ

ee(RHµ) (35)

The derivation of the parameters for the electron-nucleus
and electron-electron potential energy terms from LMO
energy values is given in Tables 1 and 2, respectively.

Similar schemes are used to partition the energies of the
bonding electrons of other molecules. In some cases there
may be a point in which the partition is arbitrary and is
defined intuitively (see Vai

ee and (Viµ
ee)e in Table 2). Also, the

partitioning of the energy for VNi
Ne (Table 1) and Vdi

ee (Table
2) ensures that dissociation of a single bond leads to the UHF/
6-31G(d) potential energy of the dissociated products. It is
important to note that, for the equilibrium structure, the MO
energy components, VaA

LMO and Vab
LMO, can be recovered

exactly. For example
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Vcd
LMO ) 1

2
Vij

ee + 2(1
2

Vik
ee(RNH))+Vkl

ee(RHH) (36)

where i and j denote bonding electrons of nitrogen, and k
and l are hydrogen electrons. Furthermore, for a distorted
geometry an approximation to the MO energy components
may be calculated.

It is not surprising that a theory which parametrizes the
energy of individual electrons and electron pairs derives the
parameters from ab initio LMO calculations. SEST, an
alternative approach to modeling PESs, shares the same

premise of molecular mechanics, which is that certain
functions and parameters are transferable from one molecule
to another. The transferability of the properties of LMOs
has been known for decades,9,10 and work is currently being
done to apply this transferability to linear scaling, divide,
and conquer methods.11-13

The other parameters of the distance dependent functions,
(RAB)e, rABa

Ne , rAiBj
ee , etc., are defined through fitting of the

equilibrium geometry, ∂E(Re)/∂R ) 0, and the vibrational
frequencies.

Table 1. Derivation of SEST Electron-Nucleus Potential
Energy Parameters for Ammonia from RHF/6-31G(d) LMO
Energy Componentsa

parameter eq derived from b

VNa
Ne 30 VaN

LMO

(VHa
Ne)e 32 VaH

LMO

(VNµ
Ne)e 34 VµN

LMO

(VHµ
Ne)e 35 VµH

LMO

(VHj
Ne)e 32 2VdH

LMO - VHi
Ne(RHH)c

VNi
Ne 30 VNH2

Ne - 2(VNa
Ne + 2(VHa

Ne)e+ 2VcN
LMO + 2VcH

LMO +
2VdH

LMO + (VNµ
Ne)e + 2(VHµ

Ne)e) - 2(VHj
Ne)e

d

(VNk
Ne)e 32 2VcN

LMO - VNi
Ne

(VHi
Ne)e 32 2VcH

LMO - VHk
Ne

a µ denotes the lone pair of nitrogen, a denotes the pair of core
electrons of nitrogen, c denotes a bond involving the specified
atom, d denotes a bond not involving a specified atom (i.e.,
another bond), i and j denote valence electrons of nitrogen, and k
denotes electron of hydrogen. b Terms of the form V LMO denote
energy values taken from LMOs of an ab initio calculation.
c VHi

Ne(RHH) denotes electron-nucleus potential energy of previously
defined HH nonbonded interaction, calculated at the equilibrium
ammonia HH distance, RHH. d VNH2

Ne denotes total electron-nucleus
potential energy of the radical amine calculated at UHF/6-31G(d).

Table 2. Derivation of SEST Electron-Electron Potential
Energy Parameters for Ammonia from UHF/6-31G(d) LMO
Energy Componentsa

parameter eq derived from b

Vaa
ee 30 Vaa

LMO

Vµµ
ee 30 Vµµ

LMO

(Vaµ
ee)e 34 Vaµ

LMO

Vdi
ee intermediate termc {VNH2

ee - Vaa
ee - 2Vcc

LMO - 2Vcd
LMO -

4Vca
LMO - Vµµ

ee

-4Vcµ
LMO -2(Vaµ

ee)e}(2 + (Vca
LMO/Vcd

LMO) +
(Vcµ

LMO/Vcd
LMO))-1d

Vai
ee 30 Vdi

ee(Vca
LMO/Vcd

LMO)
(Viµ

ee)e 34 Vdi
ee(Vcµ

LMO/ Vcd
LMO)

(Vkµ
ee)e 35 2Vcµ

LMO - (Viµ
ee)e

(Vak
ee)e 32 2Vca

LMO - Vai
ee

Vdk
ee intermediate termc 2Vcd

LMO - Vdi
ee

(Vjk
ee)e 32 2Vdk

ee - Vij
ee(RHH)e

Vij
ee 30 2Vdi

e - (Vjk
ee)e

(Vik
ee)e 32 Vcc

LMO

a µ denotes the lone pair of nitrogen, a denotes the pair of core
electrons of nitrogen, c denotes a bond involving the specified
electron, d denotes a bond not involving the specified electron
(i.e., another bond), i and j denote valence electrons of nitrogen,
and k denotes electron of hydrogen. b Terms of the form V LMO

denote energy values taken from LMOs of an ab initio calculation
(where Vab

LMO ) 2Jab
LMO -Kab

LMO). c Intermediate terms used to
simplify expressions for some energy parameters. d VNH2

ee denotes
total electron-electron potential energy of the radical amine
calculated at UHF/6-31G(d). e Vij

ee(RHH) denotes electron-
electron potential energy of previously defined HH nonbonded
interaction, calculated at the equilibrium ammonia HH distance,
RHH.

Table 3. SEST and RHF/6-31G(d) Vibrational Frequencies
for the First-Row Hydrides

frequency (cm-1)

system ν RHF/6-31G(d) SEST

BeH2 1 761 540
2 763 540
3 2107 2240
4 2324 2324

BH3 1 1225 1085
2 1305 1218
3 1306 1218
4 2694 3033
5 2816 2817
6 2818 2817

CH4 1 1487 1862
2 1488 1862
3 1488 1862
4 1702 1485
5 1702 1485
6 3196 3891
7 3303 3305
8 3305 3305
9 3307 3305

NH3
a 1 1214 2294

2 1849 1980
3 1851 1980
4 3690 5001
5 3825 3825
6 3826 3825

H2Oa 1 1829 2237
2 4070 5658
3 4191 4191

HFa 1 4362 4362

a Molecules with lone pairs have lone pair vibrational modes.
These modes are not shown, they are of the order 104-108 cm-1

and easily distinguished from the real modes.

Figure 5. Dissociation curve for H2 (SEST and RHF/
6-31G(d)).
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3. Method

Simulated Electronic Structure Theory (SEST) was imple-
mented within the MUNgauss program.14 The geometries
of the molecules studied were optimized at RHF/6-31G(d),

and the energies and MO properties were also calculated at
RHF/6-31G(d). The energies of the products of bond
dissociaton were calculated at UHF/6-31G(d). Localized
molecular orbitals were obtained through Boys localization.15

Figure 6. Dissociation curve for the BeH bond of BeH2 (SEST
and RHF/6-31G(d)).

Figure 7. Dissociation curve for the BH bond of BH3 (SEST
and RHF/6-31G(d)).

Figure 8. Dissociation curve for the CH bond of CH4 (SEST
and RHF/6-31G(d)).

Figure 9. Dissociation curve for the NH bond of NH3 (SEST
and RHF/6-31G(d)).

Figure 10. Dissociation curve for the OH bond of H2O (SEST
and RHF/6-31G(d)).

Figure 11. Dissociation curve for HF (SEST, RHF/6-31G(d)).
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4. Results and Discussion

4.1. Hydrogen Molecule and the First-Row Hydrides.
An initial demonstration of SEST is given through modeling
ab initio calculations on small molecules, such as the
hydrogen molecule and the first-row hydrides. The SEST
energy expression for the hydrogen molecule is

VH2
(RHH)) 2V Hi

Ne +
ZHZH

RHH
+ 2V HHi

Ne (RHH)+V HiHj
ee (RHH)

(37)

The SEST model of H2 fits the RHF/6-31G(d) energy at
the equilibrium bond length, (RHH)e ) 1.380 bohr. At the
dissociation limit, RHHf∞ the energy approaches the UHF/
6-31G(d) potential energy of the dissociated products, 2VH,
multiplied by the factor (cV-1)/cV, where cV is the virial
coefficient of the equilibrium structure (eq 8). The result is
a dissociation energy which is 8 millihartrees smaller than
the actual UHF/6-31G(d) dissociation energy. This could
be corrected by first scaling the potential energy of the
dissociated products (2H), before defining the energy pa-
rameters of the SEST model of H2. However, the purpose
of the study is to illustrate the ability of the SEST model to
qualitatively dissociate correctly (unlike RHF); the actual
dissociation energy is adjustable. The SEST vibrational

frequency of H2 is set to that of the RHF/6-31G(d)
calculation, 4646 cm-1. The hydrogen molecule energy
expression (eq 37) has only two parameters, rHHi

Ne and rHiHj
ee ,

which in this case are used to fit the first and second
derivatives of the RHF/6-31G(d) wave function at the
equilibrium bond length. The fit to equilibrium geometry and
frequency is achieved by setting the parameters rHHi

Ne and rHiHj
ee

to 0.27291230 bohr and 0.68583812 bohr, respectively.
Similarly, for the first-row hydrides, SEST can model the
HF equilibrium geometries and some frequencies and allow
for qualitatively correct dissociation of bonds.

Bond dissociation in the SEST models of the first-row
hydrides resembles the potential energy curve of H2. In all
cases the equilibrium geometry and energy of the SEST
model is identical to the RHF/6-31G(d) values, and,
therefore, these values are not reported. Also for all systems,
the dissociation of a single bond leads to the UHF/6-31G(d)
potential energy of the dissociated products, multiplied by
(cV-1)/cV. As previously mentioned, SEST provides an
approximation to the energy components 2Jab-Kab and Va,
for all MOs, for any point along the potential energy surface
(dissociation curve). In this study, it is only the equilibrium
values which have been fit exactly. Exact dissociation
energies can be obtained with appropriate scaling. The
ultimate goal of such a theory would be to accurately model
several points along the bond dissociation curve as well as
various points over the entire potential energy surface (i.e.,
conformational changes). An improved SEST model would
use an ab initio method such as GVB to obtain dissociation
energy curve parameters and first and second energy deriva-
tives. However, the source for defining parameters is not
limited to ab initio calculations. A SEST approach could
involve empirical parameters from experiment or a combina-
tion of ab initio and empirical parameters.

Using the SEST formulation of this study, it is possible
to fit some vibrational frequencies of the SEST models of
the first-row hydrides to RHF/6-31G(d) values (Table 3).

For each hydride model there is a hydrogen-hydrogen
(HH) nonbonding function. In an effort to explore the
transferability of these functions, the same HH nonbonding
function is used for all molecules. It was found that if the
same HH nonbonding function is used, it is only possible to
fit some of the vibrational frequencies.

For this study, the parameters of the AH bonding functions,
where A is Be, B, C, N, O, or F, as well as the atom-lone
pair, lone pair-lone pair interaction functions, were adjusted
to fit the asymmetric stretch vibrational modes of the first-
row hydrides. For BeH2, ν4 is the asymmetric stretch (Table
3). The error in the lower frequencies ranges from 133 to
223 cm-1. For the rest of the hydrides it is seen that the
asymmetric stretches are fit exactly; however, the symmetric
stretch is always overestimated. The BH3 model overesti-
mates the symmetric stretch, ν4, by 339 cm-1, and the error
in the lower frequencies is less than 140 cm-1. For CH4 the
symmetric stretch is overestimated by 695 cm-1, while the
error in the other frequencies ranges from 217 cm-1 to 375
cm-1. The overestimation of the symmetric stretch is greater
for the molecules with lone pairs. The NH3 model has a
symmetric stretch which is 1311 cm-1 larger than the RHF/

Figure 12. Dissociation curve for the CC bond of ethane
(SEST and RHF/6-31G(d).

Figure 13. Rigid rotation about the CC bond of ethane (SEST
and RHF/6-31G(d)).
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6-31G(d) value. Also, the frequency of the out-of-plane
bending mode, ν1, is overestimated by 1080 cm-1, while the
error in the other two modes is only 130 cm-1. For H2O, the
symmetric stretch, ν2, and the bending mode, ν1, are also
overestimated, by 1588 cm-1 and 408 cm-1, respectively.
These overestimations are due to the HH nonbonding
interaction. For the symmetric stretches, the out-of-plane
bend of NH3, and the angle bend of H2O, it is the HH
distances which are changing the most. It appears that the
HH nonbonding interaction is too strong for these vibrational
modes. However, upon investigation of the SEST model of
CH4, it was found that having a HH nonbonding function
for a specific molecule does not necessarily correct the
problem. By defining parameters specifically for the HH
nonbonding interaction of CH4, vibrational modes 1, 2, 3,
and 6 to 9 (Table 3) were fit to the RHF/6-31G(d) values
to within 5 cm-1. However, vibrational modes 4 and 5 were
underestimated by 942 cm-1. This suggests, that in order to
fit all the vibrational frequencies of a molecule, modification
of the functional form of at least the HH nonbonding
interaction is required.

In the SEST model, lone pairs have their own coordinates,
and therefore they also have vibrational frequencies. A mass
of 0.0001 amu is assigned to the lone pairs in frequency
calculations, which keeps the lone pair modes distinguishable
and uncoupled from the real modes. With the exception of
an out-of-plane bend, lone pair vibrational mode of HF, νlp

) 5.7 × 104 cm-1, the lone pair vibrational modes are 4 to
5 orders of magnitude larger than the real modes.

4.2. Ethane. It is essential that any modeling approach,
which is intended for large systems, accurately describes
carbon-carbon (CC) bonds. SEST can model the RHF/
6-31G(d) equilibrium structure of ethane and the dissocia-
tion of the CC bond to 2CH3, UHF/6-31G(d) (see Figure
12).

The SEST model of ethane is constructed using newly
defined CC bond and CH nonbonding functions, along with
the previously defined HH nonbonding function and a
modified CH bond function, from methane. The CH bond
function of the SEST model of methane contains two nonzero
parameters, rCiHj

ee ) 1.29131654 bohr and rHCi
Ne ) 0.86020816

bohr. In order to fit the equilibrium geometry of ethane the
CH bond function is slightly modified, the value of a third
parameter, rCHi

Ne , is adjusted from 0 to -0.04518330 bohr.
Such an approach could be applied to the construction of a
SEST force field. The parameters defined through modeling
the first-row hydrides could be considered starting points for
models of CH bonds, OH bonds, etc. Especially in the case
of hydrocarbons, parameters can be defined for small
aliphatic systems, and as they are extended the parameters
are adjusted to some limiting, ideal value.

From the CC bond dissociation curve (Figure 12), it is
seen that it is similar to that of the hydrides. Besides fitting
the equilibrium geometry and qualitatively dissociating the
CC bond correctly, the SEST model fits the rigid rotation
about the CC bond in ethane. The same HH nonbonding
function (same parameters) which is used for the first-row
hydrides is used in the ethane model, which reproduces the

potential energy curve for the rigid rotation about the CC
bond at RHF/6-31G(d) exactly (Figure 13).

As a consequence, the vibrational mode which involves
rotation about the CC bond, that has a value of 335 cm-1 at
RHF/6-31G(d), has a value of 326 cm-1 for the SEST
model. Also, through adjustment of CC bond parameters,
the CC bond stretch vibrational mode, 1063 cm-1 at RHF/
6-31G(d), is fit exactly. The differences between SEST and
RHF for the other vibrational frequencies range from 10 cm-1

to 1000 cm-1. The fitting of all such vibrational frequencies
requires more investigation and experimentation with pa-
rameters, and possibly functional forms.

5. Conclusions

It is indeed possible to implement a model of the electronic
structure of a molecule that depends solely on atomic
distances. It is shown that Simulated Electronic Structure
Theory can accurately model MO energy components of
equilibrium structures as well as the dissociation of bonds
while providing an approximation of the MO energy
components along the potential energy surface. In this study
the kinetic energy of the electrons is neglected to simplify
the energy expression. However, the inclusion of the kinetic
energy is quite feasible and would likely lead to similar
results. Also, the model in this study fits the RHF/6-31G(d)
equilibrium energies and geometries exactly and the UHF/
6-31G(d) energy of the products of bond dissociation,
multiplied by the factor (cV-1)/cV. The motivation for
defining parameters from these levels of theory is due to
availability and how quickly results can be obtained. More
accurate SEST models could be obtained through use of
higher levels of theory, GVB, Configuration Interaction, etc.
It is also not necessary to define parameters from ab initio
calculations; parameters may be empirically defined to fit
experimental data. How parameters are defined will likely
be determined by the intended use of the model.

It was seen that while this formulation of SEST fits the
equilibrium structures and energies and dissociation energies,
it only fits some of the HF vibrational frequencies. The design
of a SEST version that accurately predicts all the vibrational
frequencies of molecules may be possible. However, the
SEST version presented in this study, the parameters and
the functional form, will not predict all the vibrational
frequencies of most molecules. It is suggested that the use
of a modified functional form may solve this problem,
especially in the case of nonbonding functions. An in-depth
investigation of the dependence of the vibrational frequencies
on functional form is required.

Further work is also required on the generation of a SEST
force field. The advantage of a theory in which parameters
are derived from ab initio calculations is the ability to
automate the generation of a force field. The wave functions
of a test set of molecules could be used to determine the
parameters of bonding and nonbonding functions, according
to a standard energy partitioning scheme and through fitting
of the equilibrium structures and vibrational frequencies.

Finally, the most important aspect of the SEST approach is
the explicit inclusion of the electrons. A molecular modeling
theory which includes electronic structure has significant
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advantages over existing molecular mechanics methods. While
this study showed that the relative positions of electrons and
nuclei are related to atomic distances and consequently the MO
energy components, there are other properties related to the
average interparticle distances. Similar to how the energy is
related to the molecular structure, electronic properties such as
dipole moment could also be modeled. Of course, as seen in
this study, the inclusion of electrons allows for the breaking
and forming of bonds and hence a theory that may be used to
study kinetics. A simulated electronic structure theory creates
many possibilities, and much future work is required to explore
them all.
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Abstract: We developed the Gaussian and Fourier transform method for crystalline systems.
In this method, the Hartree (Coulomb) term of valence electron contribution is taken into account
by solving the Poisson equation based on Fourier transform technique. We compared the band
structures obtained by the Hartee-Fock (HF) approximation and the density functional theory
(DFT). We used three different types of density functional approximations such as the local
density approximation (LDA), generalized gradient approximation (GGA), and hybrid density
functional. In this paper, we confirm that our calculation technique yields similar results to previous
studies.

I. Introduction

The crystal orbital (CO) method based on the Gaussian basis
set has been developed for first-principle calculations under
the periodic boundary condition (PBC),1-9 where the direct
lattice sum of the Hartree term is the most time-consuming
part of the calculation due to the slow decay of the Coulomb
potential. The cutoff technique10 and the fast multipole
method (FMM)5,11-14 have been used for resolving this
problem. In this paper, we employ the Fourier transform for
calculating the Hartree term. The Fourier transform technique
provides an exact solution for the Hartree term under the
periodic boundary conditions, and therefore this feature is a
major advantage for band calculations in crystalline systems.
In our technique, the direct lattice sum calculation based on
the Gaussian basis set is used for determining the “core”
Hartree (Coulomb) term employed to describe the core
electrons. We also discuss the effective core potential (ECP)
technique for the “core” term in this paper. On the other
hand, the electron density of the valence electrons is
represented by the auxiliary plane wave basis set, and the
Poisson equation is solved by using the Fourier transform
(FT) in order to obtain the “valence” Hartree (Coulomb)
term. Therefore, we refer to our technique as the Gaussian
and Fourier Transform (GFT) method in this paper. It should

be noted that while the GFT method is similar to previous
studies, its details are different. For example, Lippert et al.
reported the Gaussian and augmented plane wave (GAPW)
method,15,16 in which both the Gaussian function and the
plane wave are used as representations of the valence electron
density, and the core electrons are eliminated by introducing
atomic pseudopotentials. Moreover, Krack et al. extended
the GAPW method to all-electron calculations.17 The GPW
method, which is a sister version of the GAPW method, was
reported by VandeVondele et al.,18 and Füsti-Molnár et al.
adopted an the auxiliary plane wave technique in the Fourier
transform Coulomb (FTC) method.19 In addition, Kurashige
et al. reported the adaptive density portioning technique
(ADPT) for efficient Fourier transform calculations.20 Other
techniquesfor largemolecularsystemshavebeenreported.21-24

On the other hand, Wieferink et al. employed the Gaussian
function and the Fourier transform in order to obtain the
k-dependent energy band structure,25,26 and some applica-
tions have been reported.27,28 While they used pseudopo-
tentials, in this paper we show not only the use of effective
core potential but also an explicit treatment of core electrons.
In the following section, we explain the details of the GFT
method. In Section III, we show the energy band structure
of diamond obtained with our method and compare those
results with previous studies, and a summary is presented in
Section V.* Corresponding author e-mail: t-shimazaki@aist.go.jp.
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II. Theory

A. Gaussian and Fourier Transform (GFT) Method.
In this section, we explain the GFT method for crystalline
systems. The Bloch function (crystal orbital) is defined as
the linear combination of atomic orbitals (LCAO) expansion
as follows1,2

bj
k(r)) 1

√K
∑
R

M

∑
Q

K

exp(ik ·Q)dR,j
k (k)�R

Q (1)

where Q is the translation vector. The total number of cells
is K ) K1K2K3, where K1, K2, and K3 are the number of
cells in the direction of each crystal axis, and k is the wave
vector. �R

Q ) �R(r - Q - rR) is the R-th atomic orbital (AO),
whose center is displaced from the origin of the unit cell at
Q by rR. In this paper, we use Greek letters to indicate the
indexes of the atomic orbitals. dR,j

k is the LCAO coefficient,
which is obtained from the following Schrödinger equation,
and j is the suffix for the molecular orbital (MO).

h(k)dj
k ) λj

kS(k)dj
k (2-1)

dj
k ) (d1,j

k d2,j
k · · · dR,j

k · · · dM,j
k )T (2-2)

h(k))∑
Q

K

exp(ik ·Q)h(Q) (2-3)

S(k))∑
Q

K

exp(ik ·Q)S(Q) (2-4)

dj
k*TS(k)dj′

k ) δj,j′ (2-5)

Here, the Hamiltonian and the overlap matrices are given
by [h(Q)]R� ) 〈�R

Q1|ĥ|��
Q2〉 and [S(Q)]R� ) 〈�R

Q1|��
Q2〉 , respec-

tively. ĥ is the one-electron Hamiltonian operator, and Q )
Q2 - Q1. The Bloch functions satisfy the following or-
thonormal relation, 〈bj′

k′(r)|bj
k(r)〉 ) δk′,kδj′, j.

The one-electron Hamiltonian matrix is composed of the
following terms.

h(Q))T(Q)+VNA(Q)+VHartree(Q)+VXC(Q) (3)

Here, T(Q) represents the kinetic term, whose matrix element
is obtained from [T(Q)]R� ) 〈�R

0 | - (1/2)∇ 2|��
Q〉 . VNA(Q) is

the nuclear attraction term, VHartree(Q) is the Hartree term,
and VXC(Q) is the exchange correlation term. In this paper,
we divided VNA(Q) + VHartree(Q) into core and valence
contributions as follows.

VNA(Q)+VHartree(Q))VNA
core(Q)+VHartree

core (Q)+

VSR-NA
Valence(Q)+VLR-NA

Valence(Q)+VHartree
Valence(Q) (4)

The above equation is obtained by simply dividing the terms
into core and valence contributions, where VNA

core(Q) and
VHartree

core (Q) are the nuclear attraction and Hartree terms for
the core contribution, respectively. VSR-NA

Valence(Q) and VLR-NA
Valence(Q)

are the short-range (SR) and long-range (LR) nuclear
attraction terms, respectively, for the valence contribution.
VHartree

Valence(Q) is the Hartree term for the valence contribution.
We will discuss the details of these terms later. The division
into core and valence contributions is an essential concept
in the GFT method. In this method, two different techniques

are adopted for calculating the Coulomb interactions. The
electron-electron and electron-nuclear interactions of the
core contribution are directly determined based on the
conventional quantum chemical (direct lattice sum) calcula-
tions. We will discuss the GFT method together with the
effective core potential (ECP) in the next section. On the
other hand, the interactions of valence contribution are
considered by using the Poisson equation and the Fourier
transform. The core electrons are strongly localized, and the
direct lattice sum calculation is therefore more suitable. If
we apply the Fourier transform to the core contribution, many
plane waves are required. On the other hand, the lattice sum
calculation for the valence contribution requires excessively
long CPU times due to the long-range behavior of the
Coulomb interactions. Therefore, the Fourier transform
approach is more efficient for valence contribution, whereas
the GFT method gives the exact solution for long-range
Coulomb interactions. In other words, each of these two
different techniques compensates for disadvantages of the
other one.

In order to divide the terms into core and valence
contributions, we introduce the following core and valence
electron densities.

F(r))∑
R

∑
�

∑
Q1,Q2

DR�(Q2 -Q1)��
Q2(r)�R

Q1(r)

)∑
R

∑
�

∑
Q1,Q3

DR�(Q3)�R
Q1(r)��

Q1+Q3(r))Fcore(r)+FValence(r)

(5-1)

Fcore(r))∑
R

core

∑
�

core

∑
Q1,Q3

Da�(Q3)�R
Q1(r)��

Q1+Q3(r) +

∑
R

core

∑
�

Valence

∑
Q1,Q3

Da�(Q3)�R
Q1(r)��

Q1+Q3(r) +

∑
R

Valence

∑
�

core

∑
Q1,Q3

Da�(Q3)�R
Q1(r)��

Q1+Q3(r) (5-2)

FValence(r)) ∑
R

Valence

∑
�

Valence

∑
Q1,Q3

DR�(Q3)�R
Q1(r)��

Q1+Q3(r)

(5-3)

Here, F(r) is the total electron density, and Fcore(r) and
FValence(r) are the core and valence electron densities,
respectively. The density matrix is obtained from the
following equation

DR�(Q)) 1
K∑

k
∑

j

fFD(EF - λj
k)dR,j

k* d�,j
k exp(ik ·Q) (6)

where fFD(EF - λj
k) and EF are the Fermi-Dirac distribution

function and the Fermi energy, respectively. The Hartree
potential is divided into core and valence contributions on
the basis of eqs (5-1), (5-2), and (5-3) as follows.

VHartree(r))∫ F(r′)

|r - r′|
dr′ )∫ Fcore(r′)

|r - r′|
dr′ +

∫ FValence(r′)

|r - r′|
dr′ ≡ VHartree

core (r)+VHartree
Valence(r) (7)
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The “core” Hartree term for crystalline systems is determined
from the “core” contribution of the density matrix as follows

[VHartree
core (Q)]R� ) 〈�R

0 |VHartree
core |��

Q〉

)∑
γ

core

∑
δ

core

∑
Q1,Q2

Dγδ(Q1 -Q2)〈�R
0�γ

Q1|��
Q�δ

Q2〉 +

∑
γ

core

∑
δ
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∑
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Q1|��
Q�δ

Q2〉 +

∑
γ
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∑
δ
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Q1,Q2

Dγδ(Q1 -Q2)〈�R
0�γ

Q1|��
Q�δ

Q2〉 (8-1)

〈�R
0�γ

Q1|��
Q�δ

Q2〉 )∫∫ �R
0(r1)��

Q(r1)
1

r12
�γ

Q1(r2)�δ
Q2(r2)dr1dr2

(8-2)

where r12 ) |r1 - r2|. The lattice sum over a small number
of sites is required since the core electrons are strongly
localized around the center of the nucleus and their charges
are thus perfectly compensated by the core nuclear charges.
We will discuss the “valence” Hartree term later. The nuclear
attractive potential is also divided into core and valence
contributions as follows.

VNA(r))∑
A

ZA

|r -RA|
)∑

A

ZA
core

|r -RA|
+ ∑

A

ZA
Valence

|r -RA|

≡ VNA
core(r)+VNA

Valence(r) (9)

Here, ZA is the nuclear charge for atom number A. The “core”
nuclear charge ZA

core is defined as follows.

ZA
core ) ∑

R∈ A

core

∑
�

core

∑
Q

Da�(Q)S�a(Q)+

∑
R∈ A

core

∑
�

Valence

∑
Q

Da�(Q)S�a(Q)+

∑
R∈ A

Valence

∑
�

core

∑
Q

Da�(Q)S�a(Q) (10)

The remaining charge is assigned as the “valence” nuclear
charge ZA

Valence as follows.

ZA
Valence ) ZA - ZA

core (11)

The “core” nuclear attraction term is obtained as follows.

[VNA
core(Q)]R� )-〈�R

0 |VNA
core|��

Q〉 )-〈�R
0 |∑

A

ZA
core

|r -RA|
|��

Q〉

(12)

Note that the “core” and “valence” nuclear charges are
renewed in each self-consistent field (SCF) cycle.

Next, we discuss the “valence” contribution of the
nuclear attraction and the Hartree terms. In the GFT
method, the “valence” nuclear attractive potential is
divided into short-range (SL) and long-range (LR) con-
tributions, where VNA

Valence ) VSR-NA
Valence + VLR-NA

Valence. For that
purpose, we adopt the following error function (erf) and
complementary error function (erfc).

1
r
) erf(wr)

r
+ erfc(wr)

r
(13-1)

erf(wr))∫0

wr
exp(-t2)dt (13-2)

The short-range (SR) “valence” nuclear attraction term is
determined from the complementary error function (erfc) and
the “valence” nuclear charges Z A

Valence as follows.

[VSR-NA
Valence(Q)]R� )-〈�R

0 |VSR-NA
Valence|��

Q〉

)-〈�R
0 |∑

A

ZA
Valenceerfc(√η|r -RA|)

|r -RA|
|��

Q〉 (14)

It is also necessary to calculate the long-range (LR) nuclear
attraction term corresponding to the valence nuclear charge,
which is given by the error function, Z A

Valenceerf(η1/2|r - RA|)/
|r - RA|. The term is considered together with the “valence”
Hartree term, as seen below. The sum of the “valence”
Hartree and the long-range “valence” nuclear attraction terms,
i.e., VLR-NA

Valence(Q)+VHartree
Valence(Q), is obtained from the following

Poisson equation.

[VHartree
Valence(Q)+VLR-NA

Valence(Q)]R� ) 〈�R
0 |VHartree

Valence +VLR-NA
Valence|��

Q〉

) 〈�R
0 |VPE(r)|��

Q〉 ) [VPE(Q)]R� (15-1)

∇ 2VPE(r))-4π[-FValence(r)+∑
A

ZA
Valence(η

π)
3

2 ×

exp(-η|r -RA|2)] ≡-4πFTotal
Valence(r) (15-2)

The first term in eq (15-2) corresponds to the valence
electrons, and the second term corresponds to the valence
nuclear charges. In order to obtain these equations, we used
the relation, -∇ 2(erf(η1/2r)/r) ) 4π(η/π)3/2 exp(-ηr2).

In the Hartree-Fock approximation, the Fock exchange
term VX(Q) is obtained as follows.

[VX
Fock(Q)]R� )-∑

γ
∑

δ
∑

Q1,Q2

Dγδ(Q1 -Q2)〈�R
0��

Q|�γ
Q1�δ

Q2〉

(16)

It should be noted that the determination of the Fock
exchange term may be the most time-consuming part when
we employ a fast evaluation technique for the Hartree
term, such as the Fourier transform method and the fast
multipole method (FMM). Although Izmaylov et al.
tackled this problem and proposed an efficient evaluation
technique of short-range Fock exchange term,7 we simply
estimate the Fock exchange term by truncating the sum
of eq (16) in this paper.

B. Effective Core Potential (ECP). When we employ the
effective core potential (ECP) together with the GFT method,
the core electron density, Fcore(r), and nuclear charges, ZA

core,
become zero, and the ECP term, VECP, is replaced instead of
VHartree

core + VNA
core as follows.

h(Q))T(Q)+VECP(Q)+VNA-SR
Valence(Q)+VNA-LR

Valence(Q)+

VHartree
Valence(Q)+VXC(Q) (17)
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The total energy per unit cell is obtained as follows.
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Here, G is the reciprocal lattice vector. EXC is the unit cell
exchange-correlation energy, which is written as EXC )
0.5∑QTr[D(Q)VX

Fock(Q)] in the Hartree-Fock approximation.
NFT is the number of grids for the Fourier transform. In this
paper, we adopt the Fast Fourier Transform (FFT) algorithm,
and thus FValence(G) ) ∑rg

FValence(rg) exp(-iG · rg), where rg

is the grid point.
C. Recursion Relation. We discuss a technique for cal-

culating eq (15-1). VPE(r) is expanded by plane waves by using
the Fourier transform in the GFT method.

VPE(r)) 1
NFT

∑
G

(G*0)

VPE(G)

G2
exp(iG · r) (19)

Here, VPE(G) ) 4π∑rg
FTotal
Valence(rg) exp(-iG ·rg) is the Fourier

coefficient. Equation (15-1) can be rewritten using the Fourier
coefficients as follows.

[VHartree
Valence(Q)+VLR-NA

Valence(Q)]R� )

1
NFT

∑
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(G*0)

VPE(G)

G2
〈�R

0 |exp(iG · r)|��
Q〉 (20)

In order to calculate eq (20), we use the following recursion
relation (cf. Appendix A).

〈a + 1�|exp(iG · r)|b〉 ) (P� -R�
A +

iG�

2p )〈a|exp(iG · r)|b〉 +
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1
2p

N�(b)〈a|exp(iG · r)|b - 1�〉 (21-1)

〈0|exp(iG · r)|0〉 ) exp(-µ|RA -RB|2)(π
p )

3

2 ×

exp(-G2

4p)exp(iG ·P) (21-2)

|a〉 ) (x-Rx
A)ax(y-Ry

A)ay(z-Rz
A)az exp(-ga|r -RA|2)

(21-3)

p) ga + gb (21-4)

µ)
gagb

ga + gb
(21-5)

Here, RA ) (Rx
ARy

ARz
A), a ) (axayaz), N�(a) ) a�, and 1� )

(δx�δy�δz�) utilizing Kronecker’s delta. P ) (gaRA + gbRb)/(ga

+ gb). � represents one of x, y, or z. This recursion relation is
an expansion of the Obara and Saika (OS) technique for atomic
orbital (AO) integers. Note that the analytical technique based
on this recursion relation provides highly efficient estimations
for VHartress

Valence (Q) + VLR-NA
Valence(Q).

We use the standard FFT algorithm, where the scaling is
O(NFTlog NFT) and the scaling for atomic orbital integrations is
O(M2NFT) when we employ the above recursion relation. The
fast multipole method (FFM) with a Gaussian basis set also
yields a linear scaling estimation for the Hartree term.5 In this
respect, the GFT method may become an alternative for the
FMM to calculate the Hartree term under the periodic boundary
condtions. It should be noted that the GFT method cannot
rigorously take into account isolated molecular systems because
of the periodicity of plane wave.

Figure 1. Changes of the indirect HF energy band gap with
respect to the FFT grid size. The number of horizontal axis
indicates the N × N × N FFT grid. In this paper, we employ
the 25 × 25 × 25 FFT grid, and therefore we can confirm its
numerical accuracy.

Table 1. Comparison of Calculated Direct and Indirect
Bandgaps of Diamond Based on GFT Methods and
Experimental Data

bandgap HF SVWN BLYP B3LYP exp

direct [eV] 14.6 5.9 5.7 7.4 7.3
indirect [eV] 12.6 4.2 4.4 6.0 5.48

Figure 2. Energy band structure of diamond calculated by
using the B3LYP functional.
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III. Test Calculations

A. Diamond. In this section, we examine the energy band
structure for a cubic bulk diamond on the basis of the GFT
method. We have calculated the band energy by using the HF
method and some DFT functionals. We employ three different
types of DFT functionals such as the local density approxima-
tion (LDA), the generalized gradient approximation (GGA), and
the hybrid functional. The Slater29-Vosko-Wilk-Nusair30 (SVWN)
and Becke31,32-Lee-Yang-Parr (BLYP) functionals are adopted
for the LDA and the GGA calculations, respectively. We
examine the B3LYP functional in the hybrid DFT method,33

and we use the 6-21G* basis set proposed by Catti et al. for
all calculations in this section.34 Furthermore, we set the lattice
constant to 3.57 Å and employ 25 × 25 × 25 k-points and 25
× 25 × 25 mesh grid points for the FFT procedure in order to
calculate eq (20). We confirm the validity of the FFT grid size
in Figure 1. We also checked the dependence of bandgap value
on the truncation conditions. When we take into account the
lattice integrals up to third neighboring cells, i.e. (7 × 7 × 7)
cells, the value of the diamond’s direct bandgap determined
with the B3LYP functional is 7.35378 eV. On the other hand,
a different truncation, which takes into account the second
neighboring cells, yields 7.35358 eV. These calculated bandgap
values are enough converged to discuss the property, and thus
we employ the truncation condition of third neighboring cells
in this paper. It should be noted that the “valence” Coulomb
term in the GFT method is exactly determined because of the
use of the Fourier transform. The truncation conditions affect
only the Fock exchange and “core” Hartree terms.

Table 1 summarizes the direct and indirect (minimum)
bandgaps determined by using the HF, SVWN, BLYP, and
B3LYP methods. In this paper, the direct bandgap is defined
as the eigenvalue energy difference between the top of the
valence band and the bottom of the conduction band at k ) 0,
and the indirect bandgap is the (minimum) energy difference
between the top of the valence band and the bottom of the
conduction band. We also show the corresponding values
obtained from experiments in Table 1 and the B3LYP energy
band structure in Figure 2. The SVWN functional underesti-
mates the bandgaps in comparison with the experimental values,
which is a well-known problem for LDA. There are no major
differences between the LDA (SVWN) and GGA (BLYP)
calculations. The GFT-SVWN method yields 5.5 eV for the
direct bandgap and 4.2 eV for the indirect (minimum) bandgap.
On the other hand, the direct and indirect bandgaps determined
with the linear muffin-tin-orbital (LMTO) method are 5.7 and
4.1 eV, respectively.35 The linear augmented plane wave
(LAPW) method yields 5.6 and 4.0 eV for the direct and indirect
bandgaps, respectively.36 The plane-wave basis set calculation
yields 5.57 and 3.90 eV for the same bandgaps.37 From these
calculations, we can confirm that the GFT-LDA method yields
almost the same values with these calculations. On the other
hand, the GFT-HF method overestimates the bandgap, yielding
values for the direct and indirect bandgaps of 14.6 and 12.6
eV, respectively. On the other hand, the LMTO-HF method
yields 14.6 eV for the direct bandgap and 12.6 eV for the
indirect bandgap.35 The LAPW-HF method yields 14.7 and 12.4
eV for the same values.36

The B3LYP functional includes 80% of the Slater local
density approximation VX

Slater and 72% of the Becke88(B88)-
type gradient correction ∆VX

B88. In addition, 20% of the Fock
exchange term is mixed into the functional. It was determined
by Becke in 199333 that three parameters in the B3LYP
functional reproduce the properties of molecules and the
atoms of the G1 database.38,39

VXC
B3LYP ) 0.8VX

Slater + 0.72∆VX
B88 + 0.2VX

Fock +VC
B3LYP

(22-1)

VC
B3LYP ) 0.19VC

VWN + 0.81VC
LYP (22-2)

Here, VC
VWN and VC

LYP are the VWN and LYP correlation
terms, respectively. There are only a few studies based on
the B3LYP functional for crystalline systems. The direct and
indirect bandgaps determined with the GFT-B3LYP method
are 7.4 and 6.0 eV, respectively, while the crystal orbital
(CO) method with the B3LYP functional yields 5.8 eV for
the indirect bandgap.40 In this regard, the B3LYP functional
reproduces the experimental bandgap well. The nonlocal
nature of the Fock exchange potential may be essential for
reproducing the properties of semiconductors and insulators.

B. Silicon and GaAs. We show calculation results for
silicon and GaAs in this section. We employ the effective
corepotentialproposedbyLabeloet.alforthosecalculations.41,42

The exponents and the contraction coefficients of the atomic
orbital for silicon, Ga, and As are summarized in Table 2.
We employ 5.43 Å and 5.65 Å as the lattice constants for
silicon and GaAs, respectively. The same values used in the
previous section are adopted for other calculation parameters,
such as k-point sampling and FFT-grid mesh grid points.
Figures 3 and 4 show the energy band structure of silicon

Figure 3. Energy band structure of silicon calculated by using
the B3LYP functional.

Table 2. Exponents R (in a.u.) and the Coefficients c of
the Gaussian Basis Set

Rs,p cs cp Rd cd

Si
SP 1.10 -0.40 0.70 D 0.65 1.00

0.30 1.00 1.00
SP 0.18 1.00 1.00

Ga
SP 0.90 -0.30 0.60 D 0.55 1.00

0.19 -0.10 0.50
SP 0.14 1.00 1.00

As
SP 1.10 -0.40 0.70 D 0.65 1.00

0.21 -0.20 0.50
SP 0.18 1.00 1.00
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and GaAs, respectively. These figures are determined by the
GFT-B3LYP method. We show the direct and indirect
(minimum) bandgaps of silicon determined based on the HF,
SVWN, BLYP, and B3LYP methods in Table 3. Table 3
also has experimentally obtained bandgaps. Similarly, we
summarize the direct bandgap of GaAs in Table 4, where
the direct bandgap of GaAs is the same with the minimum
energy difference between the conduction and valence bands.
The GFT-SVWN method yields 0.48 eV for the indirect
bandgaps of silicon. In comparison, the plane wave (PW)
basis set, the LMTO method, and the LAPW method yield
0.45 eV, 0.5 eV, and 0.5 eV for the property, respectively.35-37

The GFT-HF method yields 6.4 eV for the indirect bandgap,
and the LMTO and LAPW methods yield 5.6 and 6.3 eV
for the property, respectively.35,36 On the other hand, the
direct bandgap of GaAs is determined as 0.84 eV based on
the GFT-SVWN method, and the PW method and the LMTO
method yield 0.67 eV and 0.83 eV for the same value,
respectively.43 The LDA(SVWN) and GGA(BLYP) methods
underestimate the bandgaps, and the HF method overesti-
mates the property. The tendency is the same current with
the diamond’s calculations. We also summarize the cohesive
energies of silicon and GaAs determined with the SVWN,
BLYP, B3LYP, HF methods in Table 5. The calculated
values based on the DFT methods are close to the experi-
mentally obtained cohesive energy. From these calculations,
we conclude that the GFT method can yield results very
similar to those of previous studies.

We have discussed only the B3LYP functional in this
paper, but it should be noted that the HSE functional, which
possesses a screened exchange term, was successfully applied
to various systems.13,44-47 In addition, Henderson et al.
recently reported the middle-range Hartree-Fock-type ex-
change potential for the HISS functional.48,49 The importance
of the screened exchange term has been addressed through

these studies. The screening effect on the exchange term may
be essential to improve the description of the electronic
structure of molecules and crystalline systems, and a discus-
sion for the screening effect will be found in the literature.50

VI. Summary

We have discussed the GFT method in relation to crystalline
systems under the periodic boundary conditions, and applied this
method to the energy band structure calculations for the diamond,
silicon, and GaAs. The HF method overestimates the bandgap,
while both the LDA(SVWN) and GGA(BLYP) methods under-
estimate it, although the B3LYP method reproduces the bandgap
well in the case of diamond. The result indicates that the hybrid
DFT methods, such as B3LYP, are useful for improving the
molecular (material) properties of extended systems as well as
isolated molecular systems. A discussion of the first-principle
calculation studies for other materials on the basis of our technique
will be provided elsewhere.

Acknowledgment. The authors would like to thank Prof.
So Hirata of the University of Florida and Dr. Shoji Ishibashi
of the National Institute of Advanced Industrial Science and
Technology (AIST) for discussions on the DFT method.

Appendix A. Recursion Relation

In this Appendix, we derive the recursion relation of eq (22-
1). The left term of eq (22-1) is expanded from the Gaussian
product rule as follows.

〈a|exp(iG · r)|b〉 )∫∫∫ (x-Rx
A)ax(y-Ry

A)ay(z-Rz
A)az ×

exp(-ga|r -RA|2) × (x-Rx
B)bx(y-Ry

B)by(z-Rz
B)bz ×

exp(-gb|r -RB|2)exp(iG · r)dr ) exp(-µ|RA -RB|2) ×

∫∫∫ (x-Rx
A)ax(y-Ry

A)ay(z-Rz
A)az(x-Rx

B)bx(y-Ry
B)by ×

(z-Rz
B)bz exp(-p|r -P|2) exp(iG · r)dr

) exp(-µ|RA -RB|2)IxIyIz (A-1)

Here,
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Figure 4. Energy band structure of GaAs calculated by using
the B3LYP functional.

Table 3. Comparison of Calculated Direct and Indirect
Bandgaps of Silicon Based on GFT Methods and
Experimental Data

bandgap HF SVWN BLYP B3LYP exp

direct [eV] 8.3 2.2 2.4 3.5 3.4
indirect [eV] 6.4 0.48 0.90 1.9 1.17

Table 4. Comparison of Calculated Direct Bandgap of
GaAs Based on GFT Methods and Experimental Data

bandgap HF SVWN BLYP B3LYP exp

direct [eV] 6.8 0.84 0.88 1.8 1.63

Table 5. Comparison of Calculated Cohesive Energy of
Silicon and GaAs Based on GFT Methods and
Experimental Data

cohesive energy [eV] HF SVWN BLYP B3LYP exp

silicon 4.1 5.8 4.6 4.7 4.63
GaAs 3.1 6.8 4.2 4.5 6.52
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In order to derive the recursion relation, we use the following
first derivation of the equation.

1
2ga

∂I�(a�, b�)

∂R�
A

) 1
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∑
m,n

m+n is even

(a�

m )(b�
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p
- 1)+ 1

2ga
∑
m,n

m+n is even

(a�

m )(b�
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- 1
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)I�(a� - 1, b�)+
b�

2p
I�(a�, b� - 1)+

iG�
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Here, we used the following equation.
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We obtain the recursion relation from the above equations
and ∂|a〉/∂R�

A ) 2ga|a+1�〉 - N�(a)|a-1�〉 as follows.
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A.

References

(1) Pisani, C.; Dovesi, R.; Roetti, C. Hartree-Fock Ab Initio
Treatment of Crystallline Systems; Springer-Verlag: Berlin,
1988; pp 32-46.

(2) Ladik, J. J. Phys. Rep. 1999, 313, 171.

(3) Hirata, S.; Iwata, S. J. Chem. Phys. 1997, 107, 10075.

(4) Hirata, S.; Head-Gordon, M.; Bartlett, R. J. J. Chem. Phys.
1999, 111, 10774.

(5) Kudin, K. N.; Scuseria, G. E. Phys. ReV. B 2000, 61, 16440.

(6) Ayala, P. Y.; Kudin, K. N.; Scuseria, G. E. J. Phys. Chem.
2001, 115, 9698.

(7) Izmaylov, A. F.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys.
2006, 125, 104103.

(8) Maschio, L.; Usvyat, D.; Manby, F. R.; Casassa, S.; Pisani,
C.; Schutz, M. Phy. ReV. B 2007, 76, 075101.

(9) Izmaylov, A. F.; Scuseria, G. E. Phys. Chem. Chem. Phys.
2008, 10, 3421.

(10) Pisani, C.; Dovesi, R. Int. J. Quantum Chem. 1980, 17, 501.

(11) Delhalle, J.; Piela, L.; Bredas, J.-L.; Andre, J.-M. Phys. ReV.
B 1980, 22, 6254.

(12) Helgaker, T.; Jorgensen, P.; Olsen, J. Molecular Electronic-
Structure Theory; John Wiley & Sons, Ltd.: Chichester, 2000;
pp 405-425.

(13) Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E.
J. Chem. Phys. 2006, 125, 224106.

(14) Izmaylov, A. F.; Scuseria, G. E. J. Chem. Phys. 2007, 127,
144106.

(15) Lippert, G.; Hutter, J.; Parrinello, M. Mol. Phys. 1997, 92,
477.

(16) Lippert, G.; Hutter, J.; Parrinello, M. Theor. Chem. Acc. 1999,
103, 124.

(17) Krack, M.; Parrinello, M. Phys. Chem. Chem. Phys. 2000,
2, 2105.

(18) VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.;
Chassaing, T.; Hutter, J. Comput. Phys. Commun. 2004, 167,
103.
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Abstract: First principle calculations of the magnetic structure of high nuclearity clusters appears
challenging in order to validate fits of magnetic experiments. Density Functional Theory (DFT)-
Broken Symmetry approach pair became, in the past few years, the most widely applied
computational tool to investigating the chemical-physical properties of complex systems, in
particular magnetic molecular compounds. However, the application of the Broken Symmetry
formalism requires the knowledge of the energies of 2N/2 single Slater determinants, and this
task can easily become difficult for large N. Three main approximations are therefore usually
done in order to limit the computational efforts: the model dimer approach (MDA), the doped
cluster approach (DCA), and the minimum cluster approach (MCA). The whole cluster approach
(WCA) will be also applied as reference and in order to check the importance of spin Hamiltonian
high order terms. A systematic comparison between these different approaches has been,
therefore, performed. Since this study is aimed for being of help in choosing the best method
of calculation, we check here the validity of the above approaches by computing the magnetic
structure of some test systems: the tetrahedral system (HeH)4 and linear [Cu(II)]3 and [Mn(II)]4
complexes.

Introduction

Density Functional Theory (DFT) became, in the past few
years, the most widely applied computational tool to
investigating the chemical-physical properties of complex
systems,1-4 and particular attention was devoted to the
understanding of the magnetic properties of molecular
aggregates.5 The “unusual” properties of these molecular
magnets, as Olivier Khan6 called them in 1993, are related
to the common nature of their ground and excited states,
which always consist of a manifold of states of different spin
multiplicities nearly degenerate with respect to the temper-
ature quantum kT (∼200 cm-1 at room temperature). A few
paramagnetic molecules were discovered to show (at suf-
ficiently low temperatures) hysteresis of the magnetization
mimicking the bulk magnets behavior. These molecules
appeared, therefore, possible precursors of building blocks
for future molecular-sized storage devices.7 These Single
Molecule Magnets (SMM) are high nuclearity clusters, also

called molecular nanomagnets, like Mn12(µ3-O)12(CH3COO)6-
(H2O)4,

8 whose magnetic hysteresis is due to the magnetiza-
tion tunneling between the quantum states of the ground spin
manifold.9 The complete description of the electronic
structure of magnetic systems can be achieved only within
a relativistic formalism. However, the complexity of n-
electron relativistic approaches prevents its application even
to fairly complex systems. Calculations are therefore usually
performed using a simpler, nonrelativistic, Hamiltonian,
eventually including scalar relativistic effects on the valence
electrons. Coupling between spins and orbital angular
momenta (spin-orbit coupling (SOC)), in the case of
orbitally nondegenerate ground states, is included via
perturbation theory.10 Notwithstanding these simplifications,
calculation of magnetic properties remains a formidable task.
It requires a computational approach that is capable of
handling systems of chemical complexity and includes both
static and dynamic electron correlation required to describing
the many-body problem. Indeed, the main difficulty which
arises in these cases is the correct definition of the different* Corresponding author e-mail: federico.totti@unifi.it.
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spin states of the paramagnetic cluster. The highest spin state,
in which all the majority spins, say R, of the individual
paramagnetic centers are aligned parallel, is usually called
the ferromagnetic state of the cluster, |F>. This state can
be generally represented, in a molecular orbital framework,
with a single Slater determinant formed by n� doubly
occupied molecular orbitals and (nR - n�) singly occupied
R molecular orbitals (nR and n� being the number of R and
� electrons, respectively), using either a spin unrestricted or
a restricted open shell formalism. This state, neglecting the
small spin contamination due to the unrestricted formalism,
is an eigenstate of the total spin operator, S2 (S ) ΣSi), with
eigenvalue Smax ) [nR(nR+1)]/4. Another state, the antifer-
romagnetic state, |AF>, is, in general, written down with
one single Slater determinant in which the spins of the
individual centers are aligned antiparallel to each other and
represents the state with the smallest spin multiplicity. This
determinant, however, is not an eigenstate of the total spin
operator, but only of its z component, Sz, with eigenvalue
MS ) (nR-n�)/2. In general, all the eigenstates of S2 that
correspond to states with spin multiplicity Sk < Smax are linear
combinations of eigenstates of Sz with eigenvalue sk. To
properly describe these states, therefore, multiconfiguration
SCF (MC-SCF) (also called multireference (MR-SCF))
approaches must be applied. The method most widely used
to define the multireference wave function is the complete
active space method (CAS), also called full optimized
reaction space (FORS). The correlation between the electrons
introduced in this way is called static or long-range cor-
relation. The correct energy of the eigenfunction is computed
by adding the effect of all the other electrons in the molecule
(dynamic or short-range correlation) through the use of post-
HF configuration interaction (CI) on the multiconfigurational
wave function either explicitly (MR-CI, DDCI,...) or per-
turbatively (CASPT2, MRPT, MRQDPT,...).11 All of these
approaches need big computational resources and can be
applied only to rather small molecules.12

Molecular magnets can be experimentally studied by a
number of techniques, the more common being magnetiza-
tion measurements, electron magnetic resonances, and heat-
capacity calorimetry. In all cases, the interpretation of their
physical properties is performed using an effective Hamil-
tonian that, in the case of magnetic properties, acts on spin
variables (Spin Hamiltonian, SH). The eigenvalues of the
SH match exactly the low energy spectrum of the magnetic
systems by incorporating proper parameters, whose values
are derived from the experiments and from theoretical
methods. Calculations of the magnetic properties are there-
fore devoted to calculating the SH parameters with quantum
mechanical methods. For most molecular magnets, the
magnetic properties arise from the collectivization of mag-
netic moments localized onto a given atom or ion or groups
of atoms, called magnetic centers. When the orbital contribu-
tion to the individual magnetic moments is negligible, i.e.
all the magnetic centers have orbitally nondegenerate ground
states rather well isolated from excited states, they behave
like Curie paramagnets. In these cases, it is possible to
associate each center with a magnetic moment µk

2 )
gk

2µB
2Sk(Sk+1), where Sk is the spin quantum number of center

k, gk contains the SOC contribution to the magnetization,
and µB

2 is the Bohr magneton. A convenient form of the SH
to be used in these cases is13

HSpin )∑
i<j

Si · Jij · Sj +∑
k

HSk
(1)

The first term in the right-hand side in (1) is the quadratic
coupling between the magnetic moments localized on the
centers i and j bearing spins Si and Sj, respectively. The
coupling is parametrized by the exchange coupling tensor,
Jij. This is a second-rank tensor that includes all the physics
of the magnetic coupling. Higher order terms involving
fourth-order powers of the spin operators are allowed by
symmetry, and their form and calculation will be discussed
later in the text. HSk

represents the low lying energy levels
of the magnetic center k and their interaction with the
magnetic field. This Hamiltonian, neglecting any interaction
with nuclear moments, can be expressed, in generalized form,
as a sum of terms of the type BlBSk

lS(lB and lS non-negative
integers; lS e 2Sk), where lB+lS is even to preserve time-
reversal symmetry.14 Although lB is in principle unbounded,
terms with lB > 1 are seldom included. The term with lB)
1, linear with B, and lS ) 1 is the linear Zeeman interaction
of the localized spins Sk with the external magnetic field, B.
When Sk g 1, terms with lB ) 0 and lS ) 2(,4,...) must be
considered that represent the zero-field splitting (ZFS) of the
ground-state of the k-th magnetic center. A widely used form
of HSk

, including only quadratic terms with lB ) 0 and lS )
2, is

HSk
) µBB · gk · Sk + Sk ·Dk · Sk (2)

The exchange coupling tensor can be conventionally de-
composed as

Jij ) JE + Sij +Aij (3)

where E is the unit tensor, Sij is the symmetric traceless
(Jij+Jji)/2-Tr(Jij)/3 tensor, Aij is the antisymmetric tensor
(Jij-Jji)/2, and J ) Tr(Jij)/3 is referred to as the (isotropic)
exchange coupling constant. A conventional form for (1) is

HSpin )∑
i<j

[JijSi · Sj + dij · Si × Sj + Si ·Dij · Sj]+

∑
k

µBB · gk · Sk + Sk ·Dk · Sk (4)

The overall exchange interaction is decomposed into the
isotropic or Heisenberg-Dirac-vanVleck (HDvV) interac-
tion,15 the anisotropic interaction, and the antisymmetric or
Dzialozshinsky-Moryia interaction,16 respectively. All of
these interactions arise from two main mechanisms: direct
through-space magnetic interactions and electron-electron
(through-bond) correlation effects. The first mechanism is
small, in transition-metal complexes, and it is often neglected
in the calculation of the exchange parameters. It can be
modeled as a classical dipolar (the simplest) interaction
between localized magnetic moments and has the greatest
effect on the anisotropic term. The second mechanism
determines the isotropic exchange, which is often the leading
term in the SH. Anisotropic and antisymmetric interactions
are due to spin-orbit coupling mixing of excited states into
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the ground state and are generally much smaller than the
HDvV interaction. They influence the magnetic properties
only at low temperatures, the antisymmetric interaction being
responsible of the spin canting in antiferromagnets.6 In
Hamiltonian (4), the local zero-field splitting terms,
Sk ·Dk ·Sk, can have a relevant role. Similarly to the aniso-
tropic magnetic interactions, they arise from spin-spin
(dipolar) coupling and from spin-orbit coupling effects on
each magnetic center and can significantly alter the pattern
of the low lying energy levels. In transition-metal complexes
the spin-spin interaction is usually much smaller than the
spin-orbit coupling. Hamiltonian (2) was derived by the use
of second order perturbation theory, higher order perturba-
tions corresponding to term with lS > 4.17

In many cases, the zero field splitting is smaller than the
other terms. This is particularly true in paramagnetic centers
with an odd number of electrons, where the time reversal
symmetry imposes a Kramers doublet as the ground state
(in the absence of external magnetic fields). In magnetic
centers with even number of electrons, zero-field splitting
effects can be large enough to be observable at high
temperatures.18 First principle calculation of single zero field
splitting is a challenging field of research19 that was up to
now mainly confined to Ligand Field Theory.20

In a few cases a SH simpler than HDvV can be used to
interpret the magnetic properties. This typically occurs in
paramagnetic centers with odd electrons, when SOC is
dominant in determining the low energy level spectrum of
the magnetic centers. In this situation one isolated Kramers
doublet can be the ground state. Strong magnetic anisotropy
is then present, and the Lenz-Ising model Hamiltonian,21 HLI

) ∑i<jJijSiz ·Sjz, can be applied provided that all the matrix
elements of the spin-spin coupling operators between the
two ground level states of each magnetic center vanish.
Examples of Ising-like magnets can be typically found among
the rare earths compounds22 like dysprosium ethyl sulfate,
Dy(C2H5SO4)3 ·9H2O, and in some high spin cobalt(II) linear
chain compounds.23,24

The commonest way to experimentally determining the
SH parameters of a molecular magnet is the fitting of the
temperature (and/or magnetic field) dependence of its
magnetization. The main computational difficulty is the
diagonalization of the SH matrix to obtaining the eigenvec-
tors,25 since the matrix dimension rapidly grows with the
number of magnetic centers of the clusters and their spins.
Single ion ZFS and anisotropic or antisymmetric interactions
cause smaller effects on the energy spectrum than the
isotropic interaction. They produce effects that are measur-
able only at low temperatures when excited states start to
depopulate. These effects are usually better observed with
spectroscopies (EPR, Mössbauer) or calorimetric and low
temperature magnetization techniques. In the high temper-
ature range, the magnetic properties are therefore mainly
influenced by the relative population of the spin multiplets
of the cluster. A convenient working formula to compute
the magnetic susceptibility of paramagnetic samples is

�)
NAg2µB

2

3kT

∑
S

S(S+ 1)(2S+ 1)e-E(S)⁄kT

∑
S

(2S+ 1)e-E(S)⁄kT
(5)

where E(S) are the eigenvalues of the HDvV SH that depend
on the isotropic Jij’s value. Equation 5 can be fitted to the
measured values of �, and the exchange coupling constants
can in principle be measured. It has to be mentioned that in
deriving eq 5 a g value common to all the spin states was
assumed. This approximation is generally done in order to
reduce the number of parameters to fit, and it is generally
not further verified. However, it can be argued that g and J
values are correlated, and a different choice of g could
produce different values of Jij.

Magnetic anisotropy is anyway an important factor to be
explored theoretically. In SMM, for example, high easy-axis
anisotropy is required to “block” spontaneous reorientation
of the magnetization of the magnetic units. Furthermore,
feeble magnetic interactions between adjacent molecules are
to be present as a prerequisite to recording magnetic bits
independently in each molecule. The modeling of these last
interactions and the calculation of SOC effects are challeng-
ing fields for the computational chemist.26

In the following part of this report we will discuss the
mapping of the isotropic part of the HDvV spin Hamiltonian
of eq 4 with DFT approaches. Binuclear transition-metal
complexes received much attention because DFT allowed
the reproduction of experimental data with semiquantitatiVe
accuracy at the computational cost of few SCF convergences
on single Slater determinants. With the term semiquantitatiVe
we mean that the spin multiplicity of the ground states of
the complexes was reproduced, and the energy of the next
excited states was found in fair agreement (from a few
percent to (50%) with the experimental data. It is quite well
established in the literature that the best agreement with the
experimental data is reached using the Broken Symmetry
(BS) approach, developed by L. Noodleman and J. G.
Norman,27 together with the B3LYP hybrid functional28 and
valence triple-� basis functions. Within the BS approach the
energy of the low spin state (pure spin state) of the complex,
that is the state mostly affected by static electron correlation
effects, is approximately computed as a projection from a
state of mixed spin and space symmetry (the BS state)
obtained by an independent SCF calculation.29 Within this
formalism, it is, in principle, possible to handle clusters with
nuclearity higher than 2. Using the HDvV Hamiltonian of
eq 4, the number of independent coupling constants30 can
be N(N-1)/2 unless symmetry is present to reduce this
number. It is apparent that, when N > 2, the system becomes
rapidly overparameterized making meaningless any fitting
procedure. A magnetic symmetry is always imposed to
reduce the number of parameters. It often happens that the
data can be fit with different magnetic topologies, since a
multiparameter function can have many equivalent minima.
The a priori calculation of the magnetic structure of high
nuclearity clusters appears therefore challenging in order to
validate fits of experiments.31 Application of the BS formal-
ism requires the knowledge of the energies of 2N/2 single
Slater determinants, and this task can easily become difficult
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for large N. Three main approximations are therefore usually
done in order to limit the computational efforts:

1. The Model Dimer Approach (MDA). The magnetic
exchange coupling constants are computed on simple bi-
nuclear model complexes build up to mimicking the various
exchange pathways in the cluster.

2. The Doped Cluster Approach (DCA). BS calculations
are performed on model clusters in which all the magnetic
centers except two have been substituted with diamagnetic
ions.

3. The Minimum Cluster Approach (MCA). The mini-
mum number of BS determinants (equal to the number of
independent magnetic coupling constants required by the
symmetry) and the highest spin determinant are computed
on the whole cluster.

To the best of our knowledge, no systematic comparison
between these different approaches has been yet performed.
Since this study is aimed for being of help in choosing the
best method of calculation, we check here the validity of
the above approaches by computing the magnetic structure
of some test systems.

In the following we will first comment on the BS
formalism, and later we will present and discuss the magnetic
structure of the model tetrahedral system (HeH)4 and of linear
[Cu(II)]3 and [Mn(II)]4 complexes.

The Broken Symmetry Formalism

Binuclear Complexes. For two interacting magnetic
centers with localized spins S1 and S2, the HDvV spin
Hamiltonian of eq 4 takes the form

HHDvV ) J12S1 · S2 (6)

and acts on the {(2S1+1)(2S2+1)} dimensional product space
{|S1m1〉 |S2m2〉 ≡ |S1m1S2m2〉} with -S1 e m1 e S1 and -S2

e m2 e S2. Hamiltonian (6) commutes with S2 and Sz, S )
S1+S2; therefore, its eigenvectors can be labeled using the
expectation values of S2 and Sz. In order to compute the J12

parameter the energies of all the S spin multiplets, |S1-S2|
e S e S1 + S2, should be computed at the quantum
mechanical level and compared with the eigenstates of (6).
Assuming, however, the general validity of (6), only the
energies of the highest spin state, Smax ) S1 + S2, and of the
lowest spin one, Smin ) S1-S2, are to be calculated. When
the magnetic centers are in the highest spin states (high spin
complexes), the state corresponding to S ) Smax is usually
well described by one single Slater determinant. The state
corresponding to S ) Smin ) |S1-S2| is, on the contrary, a
linear combination of Slater determinants that are eigenstates
of Sz with eigenvalue Smin. Without spin contamination from
excited states the coefficients of this linear combination are
the Wigner or Clebsch-Gordon coefficients appearing in the
theory of the angular momentum.27b It is apparent that the
energy of this state can be exactly computed only using
multireference SCF approaches. The Difference Dedicated
Configuration Interaction (DDCI), developed in the past few
years by Malrieu et al.,32 allowed accurate calculation of
the exchange coupling constants in several binuclear transi-
tion-metal complexes.33 Although the configuration space
of DDCI is considerably reduced with respect to a full CI

calculation, the applications to clusters with N > 2 are still
rare.34

Using the DFT approach the calculation of the energy of
the S ) Smin state is not possible due to the single-determinant
nature of the Kohn-Sham implementation. However, in the
spin-polarized or unrestricted formalism, the energy of one
single Slater determinant build up with open shell magnetic
orbitals localized onto the two magnetic centers and bearing
the magnetic electrons with opposite spins can be written as
a weighted average of the energies of the pure spin
multiplets.27,29 This determinant, the Broken Symmetry (BS)
determinant, is an eigenstate of Sz with eigenvalue Ms ) S1

- S2, and the magnetic coupling constant can be obtained,
neglecting the usually small spin contamination of the S )
Smax state, by

J12 )
E(Smax)-E(BS)

2S1S2
(7)

Equation 7 was originally derived using spin projection
operators on the unrestricted BS determinant in the ap-
proximation that the R magnetic orbitals on center 1 and
the � magnetic orbitals on center 2 are orthogonal, Sij

R� ) 0
∀ (i ∈1,j ∈2), and can be a good approximation when (Sij

R�)2

, 1.27b Application of (7) to a number of transition-metal
binuclear complexes, particularly copper(II) complexes, was
found to give J12 values larger than the experimental ones,
and an alternative formula was used35 that read

J12
un )

E(Smax)-E(BS)

2S1S2 + S2
∀ (S1g S2) (8)

Equation 8 can be derived27a by spin projection from the
unrestricted BS determinant under the condition (Sij

R�)2 ) 1.
In this case, the BS determinant is also an eigenfunction of
S2, that for S1 ) S2, corresponds to the singlet state of the
complex. Using eq 8 one is assuming that the energy of the
BS state computed with DFT is the energy of a pure spin
state. We have here indicated the exchange coupling constant
J12

un, un meaning un-projected formula. This equation was
successfully applied in the case of strong covalent bonding
interaction between the magnetic centers.36 It must be
stressed that the BS determinant is strongly spin contami-
nated. For a single Slater determinant built with spatially
orthogonal R and � electrons the expectation value of S2 is
given by (nR g n�):37

〈S2〉SD ) (nR- n�

2 )2

+ (nR+ n�

2 )) 〈Sz〉
2 + Smax (9)

For the BS determinant of two S1 ) S2 )5/2 spins this
value is 〈S2〉SD ) 5. Comparison with 〈S2〉 computed on the
unrestricted BS determinant, 〈S2〉BS, with the value obtained
by eq 9 gave an estimate of the deviation from the conditions
under which eqs 7 and 8 were derived, i.e. of the overlap
between the magnetic orbitals. Equations have been sug-
gested correcting (7) to account for the overlap between the
magnetic orbitals through the calculation of 〈S2〉BS and of
〈S2〉 in the high-spin state, 〈S2〉HS.

38,39,29e In particular, in the
Approximate Projection (AP) method39 the working equation
for the calculation of the exchange coupling constants is
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J12
AP ) 2

E(Smax)-E(BS)

〈S2〉HS - 〈S2〉BS

(10)

The use of eq 10 generally gives J values comprised
between J12

un and J12, only in slight better agreement with
experimental findings.

The theoretical foundations of eqs 7 and 8 were subject
to some discussions,40,41 and there is not in the literature a
general agreement on their use.42 In a number of cases a
nice agreement with the experimental data was usually
reached using eq 8 in conjunction with the B3LYP func-
tional35 (in some cases a mixing of HF exchange between
33% and 50% was found to give better results43 than the
20% used by B3LYP), and we in general prefer to adopt the
strategy of applying both of the formulas to obtain upper
and lower limiting values for J12.

A generalization44 of the spin projection approach can be
obtained considering that both the high-spin and the unre-
stricted BS wave functions are eigenstates of Sz, with
eigenvalues MS )Smax and |S1-S2|, respectively. A one-to-
one correspondence can thus be established between the
diagonal elements of HHDvV (6), on the product basis {|S1s1〉 |S2

( s2〉 ≡ |S1s1S2 ( s2〉}, and the energy of the BS states. The
expectation values of (6) coincide with the eigenvalues of
the Ising, HLI, Hamiltonian, and the above procedure is often
referred to as the mapping of the unrestricted-BS wave
functions with HLI,

45 even if this Hamiltonian cannot be
applied to describing the magnetic properties of the complex.

Clusters. The exchange interactions in a cluster with N
magnetic centers is usually phenomenologically interpreted
using the HDvV Hamiltonian of eq 4 including interactions
only between adjacent centers, except in the case of linear
clusters in which coupling between the terminal atoms is
generally included. In the general cases, N(N-1)/2 exchange
coupling constants need to be determined. Ovchinnikov and
Labanowski46 developed a spin projection technique to
express the energies of the spins states of a cluster as a
weighted average of the energy of the highest spin state and
those of the unrestricted Slater determinants corresponding
to MS ) S with |S1-S2- · · ·-SN | e S < (S1+S2+SN).
Application of this technique to clusters with Si > 1/2 easily
becomes rather cumbersome. A procedure easier to handle
is obtained by mapping the diagonal elements of HHDvV (or
equivalently mapping the eigenvalues of the HLI Hamilto-
nian), 〈Πi Simi | ∑i<jJij Si ·Sj | ΠjSjmj〉 ) ∑i<jJijmimj for mi )
( si and mj ) ( sj, to the energies of appropriate BS states,
as already done for the binuclear case. At variance with the
binuclear case, this mapping cannot now be one-to-one since
one has to compute N(N-1)/2 exchange coupling constant
and has 2N/2 independent determinants, hence 2N-2/2 energy
differences. For a 4-nuclear cluster, for example, the number
of exchange coupling constants is 6 to be obtained by 7
energy differences that become 28 and 127, respectively, for
a 8-nuclear system.

The energy of the ket|smax〉 ) Πi<j|SisiSjsj〉 is easily
computed as E(Smax) ) ∑i<jJijsisj and the energy difference
with a ket, |s>, with spin projection s < smax can be written
in general form as

∆E(Smax - s))∑
i<j

(2Jij|sisj|)λij (11)

where λij ) 0 if si and sj have the same sign in |s > and 1
otherwise. Equating (11) to the energy differences between
the high spin and the BS states with the appropriate value
of s yields all the equations needed to compute the Jij values,
as it will be discussed later.

A number of more complex approaches based on the
concept of local spins have been recently proposed to
compute the exchange coupling constants in clusters.47 The
results of these procedures are close to those obtained by
the above reviewed approaches, and we will not discuss these
models any longer in the present paper.

As already found for dinuclear complexes, the application
of (11) often results in exchange coupling constants larger
than the experimental values. A modified equation in which
(8) is used to express the SH energy difference on the left-
hand side of (11) has been proposed:48

∆E(Smax - s))∑
i<j

Jij(2|sisj|+ sj)λij (sig sj) (12)

While (8) can be justified if, for some reason, DFT energies
of BS states match those of pure spin multiplets, eq 12 cannot
receive this support. In the general case, in fact, the energies
of the spin states of a cluster cannot be computed in analytical
form since the HDvV SH is not diagonal in the intermediate
spin coupling space. Furthermore to any s < smax a number
of different BS determinant can be written that cannot be
uniquely assigned to the particular S state. It is therefore
misleading referring to (12) as to the nonprojected formula
for clusters,48 and (12) should be used, if one likes, as some
kind of working equation not theoretically justified.

Benchmark Calculations of the Exchange
Coupling Constants

The H4He4 cluster. The H-He-H binuclear paramagnetic
system has been widely used to test theoretical models of
superexchange interaction between two Si ) Sj ) 1/2
paramagnetic centers.49 We have performed calculations on
the cubane-like cluster shown in Figure 1 at various H-He
distances.

All the adjacent H-He bond distances were kept equal to
each other, resulting in a tetrahedral arrangement of the H4

and He4 subunits. The spin Hamiltonian describing the
magnetic structure of this cluster is

HTd ) J(S1 · S2 + S1 · S3 + S1 · S4 + S2 · S3 + S2 · S4 + S3 · S4)

(13)

which can be written in the equivalent form

HTd )
J
2

(S2 -∑
i

Si
2) (14)

The eigenvalues of eq 6 depend only on the total spin S:

ETd(S)) J
2

S(S+ 1)- 3J
2

(15)

Note that the constant term -3J/2 is not important in this
framework, since only the energy differences are important.
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Application of the BS approach requires the calculations of
the unrestricted energies of the 8 Slater determinants shown
in the following:50

The intermediate spin, IS, determinants corresponding to
Ms ) 1 are obtained from the high spin configuration by
one-spin flip. Two-spin flips yielded the low spin determi-
nants, LS, with Ms ) 0. Using eq 11 we get two equations
defining J

∆E(2- 1)) 3J
2

(16)

∆E(2- 0)) 2J (17)

that can be used to compute the exchange coupling constant.
The results of the DFT calculations for several H-He
distances are shown in Table 1. Only for H-He distances
larger than 1.5 Å eqs 16 and 17 are simultaneously verified.
At shorter distances the J values computed with these
equations, J2-1 and J2-0 respectively, significantly differ from
each other. This shows that deviations from the spin ladder
required by Hamiltonian (13) can be found. Since at any
distance the degeneracy among each of the MS ) 1 and
MS ) 0 states, which is expected because the Td symmetry
of the cluster, is preserved, these deviations cannot be
ascribed to inaccuracy of the SCF convergences. It is
apparent that the MCA scheme, in which only one of eqs
16 or 17 is used to compute J, cannot be safely applied in
the whole range of bond distances.

Additional terms that are commonly neglected can be
added to the Hamiltonian (13), namely the biquadratic
interactions. This can be done with the four-spin biquadratic
interaction Hamiltonian51,52Jijkl∑ijkl[(Si ·Sj)(Sk ·Sl)+(Si ·Sl)-
(Sj ·Sk)+(Si ·Sk)(Sj ·Sl)], where the summation runs on the
three nuclear configurations invariant in the Td symmetry
group: the three coupling constants being equal, Jijkl ) J1234

) J1423 ) J1324. Adding this term to eq 13, modifies eq 16
that becomes

∆(2- 1)) 3
2

J+ 3
8

J1234 (18)

This spin ladder can be matched exactly with the parameters
shown in Table 2. The exchange interaction is antiferro-
magnetic in the whole range of distances, and J increases
on decreasing the H-He distance. The four-spin biquadratic
exchange increases upon shortening the bond and can be as
large as 45% of J.

In order to look at the performances of the model dimer,
MDA, and doped cluster, DCA, approaches, we performed
DFT calculations on the binuclear model system H2He2

(MDA) and on the model cluster H2He6 (DCA). The results
of the calculations are summarized in Table 3. The computed
exchange coupling constants are all positive (antiferromag-
netic interaction) independently on the approximation in use,
but it appears that DCA is closer to the full cluster
calculation. For H-He distances shorter than 1.65 Å also
the DCA results significantly deviates from the full clusters
results. This can be attributed to the increasing importance
of the four-center biquadratic exchange interaction and/or

Figure 1. The H4He4 model cluster.

MS determinant

2 |HS〉 ) |++++〉
1 |IS1〉 ) |-+++〉 |IS2〉 ) |+-++〉 |IS3〉 ) |++-+〉 |IS4〉 ) |+++-〉
0 |LS1〉 ) |-++-〉 |LS2〉 ) |-+-+〉 |LS3〉 ) |++--〉

Table 1. Distance Dependence of the J Valuea (cm-1)
Computed for the H4He4 Cluster

dH-He J2-1 J2-0 J2-1-J2-0

5.000 0.10 0.10 0.00
4.000 2.61 2.61 0.00
3.000 36.92 36.89 0.03
2.000 78.09 78.19 -0.01
1.750 43.93 43.94 -0.01
1.625 202.40 201.70 0.71
1.500 854.70 829.60 25.10
1.375 2800.73 2564.65 236.05

a J2-1: value computed through eq 16; J2-0: value computed
through eq 17.

Table 2. Distance Dependence of the J1234 Value
Computed for the H4He4 Clustera

dH-He J J1234 |J1234/J|

5.000 0.10 0.00 0.00
4.000 2.61 0.00 0.00
3.000 36.92 -0.16 0.00
2.000 78.09 0.54 0.01
1.750 43.93 0.06 0.00
1.624 202.40 -3.50 0.02
1.500 854.70 -134.01 0.16
1.375 2800.73 -1259.11 0.45

a Since the J computed with eqs 16 and 17 are fairly consistent
up to dH-He ) 1.625 Å (see Table 1), we chose to report the J
computed with only eq 16. J1234 is computed from eq 18.

Table 3. Computed Exchange Coupling Constants for
H2He2 (MDA) and H2He6 (DCA) Model Systems at Several
H-He Bond Distances and Comparison with Full Cluster
Calculations

H2He2 H2He6 H4He4

dH-He J12
a J12

a Jb

5.000 0.04 0.09 0.10
4.000 1.29 2.56 2.61
3.000 18.94 37.03 36.92
2.000 42.92 75.94 78.09
1.750 19.69 50.93 43.93
1.625 117.81 249.17 202.40
1.500 557.21 1091.90 854.70
1.375 1935.80 3726.80 2800.73

a Computed with eq 7. J12
un from eq 8 is half of this value.

b Values from Table 2.
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some polarization effects not accounted in the DCA. The
computed values of 〈S2〉 for the high spin state in the MDA
and DCA is 〈S2〉1 ) 2.00 independent of the H-He distance,
showing that no appreciable spin contamination due to the
unrestricted nature of the wave function is present, a result
commonly found in DFT. The corresponding values for the
BS state deviate from the value 1 expected from eq 9 below
dH-He ) 1.75 Å. The corresponding values for dH-He ) 1.625,
1.50, and 1.375 Å are 〈S2〉0 ) 0.99, 0.97, 0.89, respectively.
Application of eq 10 does not significantly ameliorate the
agreement between the DCA results and the full cluster
calculations.

Linear Three Spins: The [Cu(bpca)2(H2O)2{Cu(NO3)2}2]
Complex (bpca ) bis(2-pyridylcarbonyl)amine). The mag-
netic properties of the trinuclear [Cu(bpca)2(H2O)2{Cu-
(NO3)2}2] complex53 were satisfactorily interpreted using the
spin Hamiltonian

H123 ) J12(S1 · S2 + S2 · S3)+ J13(S1 · S3) (19)

that takes into account the crystallographic Ci symmetry of
the molecule (J12)J23), following the atom numbering
indicated in Figure 2. Calculation of the exchange coupling
constants was performed in the model dimer approach
(MDA) using the model dimer shown in Figure 3, in which
one bpca ligand was substituted by one N-formylimidofor-
mate molecule.

The doped cluster approach (DCA) was applied by substitut-
ing one CuII ion with one ZnII ion in turn in the structure
of Figure 2. Two symmetry independent doped clusters
models were obtained indicated as Cu(1)Cu(2)Zn and
Cu(1)ZnCu(3). Due to the crystallographic Ci symmetry, only
two BS determinant with MS ) 1/2, namely |BS1> ) |+-+>
and |BS1>) |++->,50 are required to compute the Jij values
of the whole cluster. In this case, therefore, the whole cluster
approach (WCA) and the minimum cluster approach (MCA)

are identical. The relevant equations to be used in this
approach follow from eq 11 as

∆E(3
2
-BS1)) J12; ∆E(3

2
-BS2)) J12 + J13

2
(20)

The Jij values computed with the different approaches are
reported in Table 4 and compared to the experimental
findings. The close match between J12 and J12

AP is due to
the fact that 〈S2〉BS and 〈S2〉HS were computed very close
to the theoretical values of 1.0 and 2.0, respectively. This
shows that the BS state is a equal mixture of the singlet
and triplet state, as expected in the weak covalent limit,
and that the spin contamination of the triplet state is
negligible.

J12
un in MDA and DCA closely match the experimental J12

value, as already often found for other Cu(II) complexes,
but the value of J13 is uncorrectly reproduced by DCA. The
WCA calculations reproduced the alternation in sign of the
J’s value, but |J12| is quite far from the experiment.

Linear Four Spins: The [Mn4(OAc)6(py)2(cat)2]2-

(OAc ) acetate, py ) pyridine, cat ) catecholate
dianion) Complex. This cluster is one of the few linear
clusters containing high-spin Mn(II) ions. This system
seemed therefore particularly useful to test the consistency
of different computational approaches since high spin Mn(II)
has an orbitally nondegenerate ground state, 6A1, that is also
the only possible sextet state. This fact minimizes the effects
of spin-orbit coupling and assures that the ground-state can
be described with one Slater determinant. The linear geom-
etry renders the various coupling constants different from
each other, and large relative deviations are expected. The
magnetic properties of this compound have not yet been
measured; therefore, comparison with experiment will not
be possible.

The molecular structure of the cluster54 is schematically
shown in Figure 4 together with the numbering scheme of

Figure 2. Molecular structure of the [Cu(bpca)2(H2O)2{Cu-
(NO3)2}2] cluster (bpca ) bis(2-pyridylcarbonyl)amine).

Figure 3. Dinuclear model of [Cu(bpca)2(H2O)2{Cu(NO3)2}2]
used in the MDA calculations.

Table 4. Computed J12 and J13 Values (cm-1) with
Different Approaches

J12 J13

MDAa -25.0 (-12.5;-25.0) -
DCAa -29.0 (-14.5;-29.0) -5.71 (-2.85;-5.66)
WCA -50.7 7.68
exp. -14.1 5.7

a Computed with eq 7. The values reported in parentheses were
computed with eq 8 for J12

un and eq 10 for J12
AP, respectively.

Figure 4. Molecular structure of the [Mn4(OAc)6(py)2(cat)2]2-

cluster anion.
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the Mn(II) atoms. Since the molecule is centrosymmetric,
the appropriate spin Hamiltonian is

H1234 ) J12(S1 · S2 + S3 · S4)+ J23(S2 · S3)+ J13(S1 · S3 +
S2 · S4)+ J14(S1 · S4) (21)

The 8 possible Slater determinants take the form shown
in the following:50

The energies of the intermediate spin states were found
to be degenerate in couples according to the Ci symmetry
of the complexes; therefore, E(IS1) ) E(IS4) and E(IS2) )
E(IS3), leaving 5 independent energy differences to compute
the 4 spin Hamiltonian parameters. The relevant equations,
obtained by application of eq 11, are shown in Table 5
together with the computed DFT energy differences.

In the MDA, the dimers shown in Figure 5 were used.
The exchange between Mn(1) and Mn(2) (equal to that
between Mn(3) and Mn(4)) is propagated by two µ2-OAc-

ions and one µ1-Cat2- ion (Figure 5 left); the model dimer
for this interaction being [Mn2(OAc)3(py)(Cat)(CatH)]2-. The
second exchange pathway, between Mn(3) and Mn(4), is due
to two bridging µ1-Cat2- ions (Figure 5 right) and is modeled
by the [Mn2(HOAc)4(Cat)2] dimer.

In the DCA, four model dinuclear species were obtained
by substituting two Mn(II) centers with diamagnetic Sn(II):
MnMnSnSn, SnMnMnSn, MnSnMnSn, and MnSnSnMn.
They permit the DCA calculation of J12, J23, J13, and J14,
respectively.

WCA and MCA calculations were performed on the
structure shown in Figure 4. In the Minimum Cluster
Approach we need to choose 4 equations among the 5
possibilities shown in Table 5. This leads to 5 sets of
equations that can be solved separately yielding 5 sets of
possible Jij values. If the system were exact, the five sets of
solutions would be identical and equal to the WCA calcula-
tion. The results of the calculations are collected in Table 6.

WCA calculations are customarily performed assuming
a priori the magnetic spin topology in order to reduce
the number of exchange coupling constants, and, hence,
the number of BS states, to be computed. In the general

cases, it is impossible to determine the cluster’s spin
topology from experiments, due to overparameterization
problems, and theoretical tools are mandatory to meaning-
fully solve the problem. This can be achieved, within DFT,
by applying a procedure previously described55 that consists
in computing all the m energy differences between the high
spin states and the possible BS determinants, ∆EDFT(Smax-s);
building up a system of equations using (11); extracting the
{Jij} set that minimizes the test function f )
∑s[∆EDFT(Smax-s)-∆E(Smax-s)]2, being 0 in the case of a
perfect match between the SH expectation values and the
BS energies.56 From this procedure one obtains the Jij values
that best fit the DFT energies, together with their standard
deviations. It is computationally heavy to applying this
formalism to large clusters and a simplified procedure, in
which only one subset of all the possible BS energies is
evaluated, was applied.57,58

For the linear Mn4 cluster the spin topology one can
assume is obtained neglecting J13 and J14 in (21), and we
can check here the quality of this approximation. We have
therefore 5 energy differences that can be used to computing
up to a maximum of 4 exchange coupling constants. The
results of the calculations are reported in Table 7. As
expected, J12 and J23 are larger than the other two coupling
constants. The inclusion of J13 and J14 in turn into the fitting
procedure causes f to decrease without significantly altering
the J12 and J23 values that average to 47.7 cm-1 and -5.5

Figure 5. Dinuclear models of [Mn4(OAc)6(py)2(cat)2]2- used in the MDA calculations.

MS determinant

10 |HS〉 ) |++++〉
5 |IS1〉 ) |-+++〉 |IS2〉 ) |+-++〉 |IS3〉 ) |++-+〉 |IS4〉 ) |+++-〉
0 |LS1〉 ) |-++-〉 |LS2〉 ) |-+-+〉 |LS3〉 ) |++--〉

Table 5. Energy Differences Used To Compute the
Exchange Coupling Constants for [Mn4(OAc)6(py)2(cat)2]2-

E(HS)-E(X)) J12 J23 J13 J14 ∆E (cm-1)

IS1 25/2 25/2 25/2 603.8
IS2 25/2 25/2 25/2 530.0
LS1 25 25 1191.7
LS2 25 25/2 25/2 1123.7
LS3 25/2 25 25/2 -65.6

Table 6. Jij Values (cm-1) of [Mn4(OAc)6(py)2(cat)2]2-

Computed with MCAa Using Different Sets of BS Statesa

set 1 2 3 4 5

J12 47.26 48.0 48.0 47.62 47.68
J23 -5.27 -5.27 -5.98 -5.98 -5.27
J13 0.40 -0.31 0.40 0.05 0.05
J14 0.64 0.64 -0.08 0.64 -0.08

a The different MCA sets were obtained with the equations
E(HS)-E(X) (see Table 6) with X: set 1 ) {IS1,IS2,LS1,LS2}; set 2
) {IS1, IS2,LS1,LS3}; set 3 ) {IS1,IS2,LS2,LS3}; set 4 )
{IS1,LS1,LS2,LS3}; set 5 ) {IS2,LS1,LS2,LS3}.
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cm-1 respectively. It has to be noted that even in the fit with
all the four parameters f is still different from 0 (28.8 cm-1).

In Table 8 a comparison between the J values computed
at the different level of approximation is presented. In all
the calculations J12 is the leading antiferromagnetic interac-
tion, except when the DCA is applied. In this latter case J14

is the greatest term of the SH. This result is, of course, wrong
and shows that the diamagnetic metal ions can be noninno-
cent partners in transmitting the superexchange interactions.
The MDA results do not reproduce the sign alternation
between J12 and J23 computed with WCA. MCA calculations
are dependent on the chosen BS set (Table 7); in any case
J12 and J23 compare well with the values obtained with WCA,
and differences are seen only on the J13 and J14 values. Test
calculations on systems with larger J values than the present
ones must be performed in order to check if this is a general
trend. Other spin topologies than the linear one also have to
be checked in order to be able to generalize these results.

In the WCA calculations the match between DFT and SH
energies is not perfect even if SH is considered with all the
parameters free. This fact can be due to an internal
inconsistency of the BS approach or to the inadequacy of
the SH in the form given in eq 21. As already done for the
H4He4 model system, higher order (biquadratic) terms can
be added to (21). These terms can be two-centers or four-
centers that in Ci symmetry become

Hbq
2 ) j12[(S1 · S2)

2 + (S3 · S4)
2]+ j23(S2 · S3)

2 +

j13[(S1 · S3)
2 + (S2 · S4)

2]+ j14(S1 · S4)
2 (22)

and

Hbq
4 ) J1234(S1 · S2)(S3 · S4) (23)

The effect of these terms on the energies of the cluster can
cause deviations from the HDvV behavior. Within the BS
formalism it would be impossible to handle with these effects
since the number of parameters easily exceed the number
of available BS energies. The calculation of the energies of
the spin states, which requires MR-CI approaches, is needed
for an evaluation of the importance of these interactions.59

However it is important to note that eq 22 only adds a

constant term, jbq ) (625/16)[2j12+j23+2j13+j14], to the
diagonal elements of the HDvV matrix and does not
contribute to the energy differences of Table 5. Therefore
the effect of Hbq

2 cannot be extracted from BS calculations.
The expectation value of Hbq

4 is nonzero only for the |IS1 >
and |IS2 > states, whose relative energies in Table 5 must
be modified adding 25j1234/8. Inserting this new parameter,
the relative energies of Table 5 can be reproduced with J12

) 47.62 cm-1, J23 ) -6.6 cm-1, J13 ) 0.05 cm-1, J14 ) 0.3
cm-1, and J1234 ) 1.4 cm-1.

Computational Details

Calculations have been performed using the NWCHEM 5.0
program package, as developed and distributed by Pacific
Northwest National Laboratory, P.O. Box 999, Richland, WA
99352 U.S.A., and funded by the U.S. Department of
Energy.60 6-311G** basis sets61 were applied to H and He
atoms for the calculations on the model (HeH)4 cluster.
LANL2DZ Gaussian basis set62 with their correspondent
LANL2 pseudopotential were used for calculations on
[Cu(bpca)2(H2O)2{Cu(NO3)2}2] except for H atoms to which
a 31G basis was applied. All electron Ahlrichs TZV basis
sets63 were used for the Mn cluster calculations except for
H atoms to which a 311G basis was applied. All the basis
sets came with the NWCHEM package. The hybrid B3LYP
functional,28 as implemented in NWCHEM 5.0, was used
in all cases. The grid parameter was set to xfine, and the
energies converged to 10-8 hartree.

Concluding Remarks

We have shown that the BS formalism give an internally
consistent set of equations that can be used to determine the
topology of the magnetic interactions in paramagnetic
transition-metal clusters. Solving the whole set of BS
equations allows the calculation of the exchange coupling
parameters avoiding the indetermination that can be caused
by an a priori choice of one particular subset, and the
uncertainties on the computed values can be estimated from
the least-squares fitting procedure. At least for the cases we
computed here, these uncertainties arise from higher order
terms that are not included in the HDvV spin Hamiltonian.
BS formalism cannot be used to compute the biquadratic
two-centers terms since their diagonal contributions in the
spin Hamiltonian matrix is a constant but can be used to
estimating the three and four center contributions.

We have seen that application of the BS formalism requires
independent SCF convergences on several Slater determi-
nants corresponding to the possible distributions of spin
densities on the magnetic center. These convergences are
prone to instability, and some criteria should be followed to

Table 7. Jij Valuesa (cm-1) of [Mn4(OAc)6(py)2(cat)2]2-

Computed with WCA with the Different Spin Hamiltonian
Topologiesb

J12 J23 J13 J14 f

47.73(2) -5.38(6) - - 62.3
47.68(3) -5.45(9) 0.11(3) - 51.2
47.65(3) -5.6(1) 0.08(3) 0.3(1) 28.1

a f ) ∑s[∆EDFT(Smax-s)-∆E(Smax-s)]2, see text. Standard
deviations are shown in parentheses. b i.e. number of different J’s
taken into consideration in the SH.

Table 8. Comparison between Jij Values (cm-1) Computed for [Mn4(OAc)6(py)2(cat)2]2- with MDA, DCA, MCA, and WCA

calculation model J12 J23 J13 J14

MDAb 53.8(44.8;53.7) 19.2(16.0;19.2) - -
DCAb 33.1(27.6;33.1) 35.0(28.3;35.2) 14.1(11.7;14.0) 72.9(60.7;72.8)
MCAa 47.26 -5.3 0.4 0.6
WCA 47.65(3) -5.6(1) 0.08(3) 0.3(1)

a Set 1 was chosen among the results shown in Table 6. b Computed with eq 7. The values reported in parentheses are J12
un and J12

AP,
respectively (see eqs 8 and 10).
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being sure that the correct solution is found. Often a number
of orbitals are close in energy in the SOMO-LUMO region.
Visual inspection of the magnetic orbitals is possible only
when their number is limited; this was not easily possible
already for the Mn4 cluster. Here we choose the quality of
a SCF convergence looking at the spin density (Mulliken
and/or Löwdin) of the metals and at the value of 〈S2〉BS and
〈S2〉HS. The computed values of the spin densities and of the
expectation values of S2 for [Cu(bpca)2(H2O)2{Cu(NO3)2}2]
and [Mn4(OAc)6(py)2(cat)2]2- are reported in Tables S1-S4.
For Cu(II) spin densities were found to vary between 0.60
au to 0.66 au to be compared with the fully localized value
of 1; for the Mn(II) complex spin densities were found to
vary between 4.58 au and 4.67 au against a fully localized
value of 5. The use of the WCA permits also the judging
about the correctness of the SCF convergence, since we have
found that when an incorrect energy is introduced into the
BS set of equations a large error (hundreds of wavenumbers)
is usually computed in the least-squares procedure.
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Abstract: Halogen bonding is a unique type of noncovalent binding phenomenon in which a halogen
atom interacts attractively with an electronegative atom such as oxygen or nitrogen. These types of
interactions have been the subject of many recent investigations because of their potential in the
development of new materials and pharmaceutical compounds. Recently, it was observed that most
halogen bonding interactions in biological contexts involve close contacts between a halogen bound
to an aromatic ring and a carbonyl oxygen on a protein’s backbone structure. In this work we
investigate interactions of substituted bromobenzenes and bromopyrimidines with acetone to
ascertain the effects of various substituents upon the strengths of these interactions. It was found
that replacement of ring hydrogens in these systems has dramatic effects upon the interaction
strengths of the resulting complexes, which have interaction energies between -1.80 and -7.11
kcal/mol. Examination of the electrostatic potentials of the substituted bromobenzene and bromopy-
rimidine monomers indicates that the addition of substituents has a large influence upon the most
positive electrostatic potential on the surface of the interacting bromine and thus modulates these
halogen bonding interactions. Results obtained using the symmetry-adapted perturbation theory
(SAPT) interaction energy decomposition procedure also indicate that electrostatic interactions play
the key role in these halogen bonding interactions. These results have important implications in
drug design and crystal engineering. Halogen bonds have been a subject of great interest in these
fields because of their unique noncovalent bonding characteristics.

Introduction
It is widely known that intermolecular and intramolecular
noncovalent interactions are very important for the structures

and stabilities of a broad range of molecular complexes and
crystals. The hydrogen bond, the chief mode of interaction
of which is through electrostatic and charge-transfer (delo-
calization) forces, has been the subject of many investigations
and can be said to be the best characterized type of
noncovalent interaction. The role of dispersion (and stacking)
forces throughout many facets of chemistry has received an
increasing amount of attention in the past decade or so. In
recent years, halogen bonds, which share many properties
with hydrogen bonds (although perhaps having a larger
dispersive contribution), have been recognized as playing
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key roles in a wide variety of chemical systems. The
phenomenon of halogen bonding has been a subject of
particular interest within the fields of biochemistry 1,2 and
materials science.2,3 These types of interactions have recently
been the subject of many theoretical 1,4-16 and experimental
17-19 investigations and promise to be of considerable
significance in the development of novel chemical species
with unique properties that may prove to be invaluable
throughout chemistry and, more specifically, in drug design
and crystal engineering. The importance of halogen bonds
within various areas of scientific research is widely recog-
nized, and this mode of interaction has been the subject of
several recent review and perspectives articles.3,4,20,21

A halogen bond is a short-range RX · · ·YZ interaction,
where X is a halogen (typically chlorine, bromine, or iodine)
that is part of the molecule RX and YZ is a Lewis base; Y
is often an atom, such as oxygen, nitrogen, or sulfur, that
has a lone pair.3,4 Halogen bonds can be said to be analogous
in many ways to hydrogen bonds (of the form RH · · ·YZ)
and are often treated in a similar manner. In both hydrogen
bonding and halogen bonding, the donor (R) and the acceptor
(Y) tend to be electronegative. For both hydrogen and
halogen bonds, the distances H · · ·Y and X · · ·Y are generally
less than the sum of the van der Waals radii of these atoms.

Because both halogen atoms and halogen bond acceptors
(Y) are electronegative and are typically viewed as being
negatively charged, the existence of halogen bonds is
surprising and counterintuitive. However, studies of the
electrostatic potentials of halogen-containing molecules by
Brinck et al.,5 Auffinger et al.,1 and Politzer et al. 4,6 show
that the larger halogens bound to carbon (and some other
elements) often have a region of positive potential on the
extension of the covalent bond to the halogen atom, that is,
on the side of the halogen opposite to R (see the bromines
in Figures 1B and 2A (bromobenzene and 5-bromopyrimi-
dine)). The remainder of the halogen normally has also a
negative region of potential, forming a ring around its lateral
sides, except for cases where the molecule has one or more
strongly electron-withdrawing groups.6 The region of positive
potential on a halogen’s surface is often described as a
positive σ-hole,7 and has also been termed the electropositive
crown.1 The electrostatic attraction between the σ-hole and
the negative Lewis base is the origin of halogen bonding. A
halogen’s σ-hole becomes larger and more positive as the
size of the halogen increases, with a corresponding tendency
for a halogen bond to become stronger.4,6 Fluorine, the
smallest (and most electronegative) halogen, rarely forms
an electropositive crown, and thus does not normally

Figure 1. Electrostatic potentials of selected bromobenzene molecules in order of increasing Br VS,max: (A) 3,5-diaminobro-
mobenzene, (B) bromobenzene, (C) 2,6-dicyanobromobenzene, (D) pentafluorobromobenzene, (E) meta-C6O2H3Br (2), (F)
C6O4HBr (3). Color ranges, in kcal/mol, are purple, negative; blue, from 0 to 15; green, from 15 to 30; yellow, from 30 to 42. The
bromine is facing the viewer in each plot.

Figure 2. Electrostatic potentials of selected substituted bromopyrimidine molecules in order of increasing Br VS,max: (A)
5-bromopyrimidne, (B) 5-bromo-4,6-dicyanopyrimidine, (C) C4N2O2HBr (4). Color ranges, in kcal/mol, are purple, negative; blue,
from 0 to 15; green, from 15 to 30; yellow, from 30 to 42; red, greater than 42. The bromine is facing the viewer in each plot.
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participate in halogen bonding. It has also been observed
that the size and positive strength of the σ-hole tend to
increase as R becomes more electron withdrawing.4,6 Very
recently, it has been demonstrated that covalently bonded
atoms in Groups V and VI can also exhibit positive σ-holes
and interact through these with Lewis bases.8-10 It is
interesting to note that the phenomenon of halogen bonding
is attributable to a nonuniform atomic electron density and
a corollary to this is that halogen bonds can only be properly
treated using methods capable of accurately describing
electron densities. Thus, molecular mechanics and molecular
dynamics methods, which are based on parametrized force
fields, would be expected to fail in describing halogen-
bonding interactions.

The presence of a positive σ-hole on a halogen indicates
that noncovalent interactions between that halogen and an
electronegative atom should be highly electrostatic in nature.
However, it should be kept in mind that halogen atoms,
which are large and have large polarizabilities, would also
be expected to interact with other chemical species through
dispersion. In a recent work, the interactions between
fluorinated and nonfluorinated halomethanes and formalde-
hyde (as well as methanol) were studied using high-level
computational methods, including symmetry-adapted per-
turbation theory (SAPT).11 It was found that these types of
halogen-bonding interactions depend strongly upon both
electrostatic and dispersion contributions. The relative mag-
nitudes of these are highly dependent upon the identity of
the halogen X and the number of fluorine substituents in R,
with the relative contribution of the electrostatic term
increasing for larger X and higher degrees of fluorine
substitution. These bonding tendencies correspond to the
presence of larger and more positive σ-holes.

Halogen bonds involving oxygen as the acceptor Y are
especially interesting in biochemistry because they are, by
a large margin, the most common types of halogen bonds
involved in protein-ligand interactions. Recently, Auffinger
and co-workers carried out a crystallographic database survey
of short halogen-oxygen distances1 and found that 81 out
of 113 X · · ·O interactions involved carbonyl oxygens (the
database contained 66 protein structures and 6 nucleic acid
structures from the protein data bank). These interactions
generally involved a protein’s backbone carbonyl group (78
out of 81). Interactions involving hydroxyl oxygens were
also fairly common (18 out of 113). In 73 of the 78
protein-ligand complexes that involve a carbonyl oxygen
as the acceptor (∼94%), the halogen X is bonded to an
aromatic or heterocyclic aromatic ring.

Clearly, halogen bonds in which R is aromatic (and
heterocyclic aromatic) and Y is a carbonyl oxygen are among
the most important in biological systems. In this work, we
investigated the effects of various substituents on the
electrostatic potentials (especially in the region of the halogen
σ-holes), optimal complex geometries, and binding energies
of bromobenzene-acetone and bromopyrimidine-acetone
complexes. The substitution of various chemical groups on
the aromatic rings in these complexes has a large effect on
the halogen’s interactive behavior and thus could be used in
the design of novel (pharmaceutical) ligands. Here we

attempt to determine some of the fundamental rules for
modifying a halogen bond’s character via ring substitution.

Computational Methods

General. Halogen bonds are multifaceted types of interac-
tions that depend strongly upon both electrostatic and dispersion
forces. We have used several techniques to describe the halogen
bonds occurring between variously substituted bromobenzenes
and bromopyrimidines as donors and acetone as the acceptor.
To study the geometrical and energetic parameters that govern
these halogen bonds, we have obtained optimized intermolecular
geometries and binding energies with the MP2 method and a
mixed basis set, which describes bromine using the pseudo-
potential-based aug-cc-pVDZ-PP and all other atoms with aug-
cc-pVDZ. This approach is adopted because aug-cc-pVDZ-PP
implicitly accounts for relativistic effects, which may influence
halogen bonding interactions with such a large atom. We have
computed the electrostatic potentials of all of the substituted
bromobenzenes and bromopyrimidines, as well as that of
acetone, at the B3PW91/6-31G(d,p) level. Finally, symmetry-
adapted perturbation theory (SAPT) computations were per-
formed to assess the relative contributions of dispersion and
electrostatic (as well as induction and exchange) forces to the
overall halogen bonding interactions. SAPT computations were
performed using the aug-cc-pVDZ basis set.

Complete optimization of each of the halogen-bonding
complexes described here proved to be too time-consuming and
computationally costly to be practical. As a way to decrease
the cost of these calculations, we divided the optimizations into
two parts, first the monomers individually and then the dimer
geometries in a self-consistent manner, using the optimal
monomer geometries. The former were determined using the
B3LYP/6-31G* method. To obtain optimal dimer geometries,
the relative orientations of the monomers were systematically
varied until the MP2/aug-cc-pVDZ(aug-cc-pVDZ-PP) binding
energies reached self-consistency, as follows (see Figure 3 for
geometric parameters):

1. The dBr · · ·O distance is changed by increments of 0.05 Å.
2. The angle θ2 is varied by increments of one degree. θ1

was assumed to be 180° for all complexes considered. The

Figure 3. Schematic representation of C6H5Br · · ·OdC(CH3)2

halogen bond.
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validity of this assumption has been explored, and the results
are described in the Results section. It should be noted that
we have carried out a complete optimization for the case of
the (unsubstituted) benzene-acetone complex at the MP2/
aug-cc-pVDZ level of theory (CP corrected, no pseudopo-
tential), the resulting geometrical parameters for this opti-
mized complex are dBr · · ·O ) 3.13 Å, θ2 )120.6°, and θ1 )
179.3°; the geometrical values obtained using our “by-hand”
method are dBr · · ·O ) 3.15 Å, θ2 )120°, and θ1 ) 180° (by
definition). We believe that the optimization procedure used
here is sufficient to obtain final geometries that are very close
to the potential energy minima for these complexes and that,
given the present purpose of comparing halogen bonds with
various aromatic substituents, the results obtained using this
method will describe the important trends in terms of the
effects of substituents on geometrical parameters. We will
also note here that we carried out another optimization for
the benzene-acetone complex using the DFT/B3LYP/
6-31+G* method to determine whether or not a lower level
method, which does not describe dispersion interaction
contributions very well, could systematically be used for the
purposes of geometry optimization in this study. It was found
that the final geometry parameters obtained at this level of
theory are as follows: dBr · · ·O ) 3.30Å, θ2 )130.7°, and θ1

) 178.9°. These results are rather far from those obtained
at the MP2/aug-cc-pVDZ level, with a ∆θ2 of about 10° and
∆dBr · · ·O of 0.13 Å. With this result in mind, we determined
that the optimization of these complexes using DFT methods
would not be appropriate for this study.

Interaction energies were calculated at the MP2/aug-cc-
pVDZ/aug-cc-pVDZ-PP level of theory, which has been
shown to give results that are at least semiquantitative for
halogen bonds,11 although there is a tendency to underesti-
mate the strengths of the interactions. This is more pro-
nounced for weak halogen bonds (which are generally more
dispersive in nature) and becomes less important for strong
ones (which are generally more electrostatic). ∆E is given
by

∆E)Ecomplex - (Eacetone +Ebrominederivative) (1)

Here the counterpoise method was used to account for the
basis set superposition error (for binding energies and
optimization computations).22

In this work, our halogen bond donors are bromobenzene
and bromopyrimidine derivatives and are listed in Tables 1
and 2. We have included a variety of functional groups (NH2,
OH, F, Cl, CN, anddO) in different combinations. It should
be noted that among these are some carbonyl derivatives that
may be unrealistic and might not exist for any extended
period of time in nature (Table 2). The purpose of these
unlikely structures, identified in Table 2 as 1, 2, 3, and 4,
was to investigate the halogen bonding behavior of extreme
examples of the bromobenzene and bromopyrimidine
frameworks.

To compare the strengths of hydrogen bonds for complexes
that are structurally similar to some of the halogen bonding
complexes studied here, we have computed geometries and
binding energies for the benzene-acetone and pentafluoroben-
zene-acetone complexes using the MP2/aug-cc-pVDZ

method. The results obtained for these complexes can be
directly compared with those for the bromobenzene-acetone
and pentafluorobromobenzene-acetone complexes.

Table 1. Computed Bromine VS,max Values for a Series of
Brominated Benzenes and Pyrimidines, and Interaction
Energies, Optimized Br · · ·O Separations, and Angles θ2,
for Their Complexes with Acetonea

molecule
Br

VS,max

interaction
energy

Br · · ·O
separation

Br · · ·OdC
angle θ2

bromobenzenes
3,5-diaminobromobenzene 4.9 -1.80 3.15 120
para-aminobromobenzene 5.8 -2.02 3.10 121
meta-aminobromobenzene 7.1 -2.08 3.15 120
bromobenzene 9.7 -2.23 3.15 120
ortho-aminobromobenzene 9.9 -2.55 3.10 121
3,5-dihydroxybromobenzene 11.5 -2.25 3.10 121
ortho-chlorobromobenzene 12.9 -2.50 3.10 121
para-chlorobromobenzene 13.8 -2.52 3.10 121
meta-chlorobromobenzene 13.9 -2.53 3.10 121
3,5-difluorobromobenzene 15.7 -2.93 3.00 125
2,6-dicyanobromobenzene 22.1 -4.39 2.95 123
pentafluorobromobenzene 23.4 -4.08 2.95 124
3,5-dicyanobromobenzene 25.4 -3.71 2.95 127

bromopyrimidines
2-bromopyrimidine 10.0 -2.46 3.05 121
5-bromopyrimidine 19.2 -3.24 3.00 125
5-bromo-4,6-dicyanopyrimidine 31.4 -5.04 2.75 125

a The VS,max and the interaction energies are in kcal/mol, Br · · ·O
separations in angstroms, and angles θ2 in degrees.

Table 2. Computed Bromine VS,max Values for Four
Brominated Carbonyl-Containing Heterocycles, and
Interaction Energies, Optimized Br · · ·O Separations, and
Angles θ1 and θ2, for Their Complexes with Acetonea

a The VS,max and the interaction energies are in kcal/mol, Br · · ·O
separations in angstroms, and angles θ2 in degrees.
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Electrostatic Potential V(r). The electrostatic potential
V(r) that the electrons and nuclei of a molecule create at
any point r in the surrounding space is given by eq 2.

V(r))∑
A

ZA

|RA - r|
-∫ F(r′)dr′

|r′- r|
(2)

Z is the charge on nucleus A, located at RA, and F(r) is the
electronic density function of the molecule. V(r) is positive
in those regions in which the dominant contribution is that
of the nuclei, negative where it is that of the electrons. The
electrostatic potential is a physical observable, which can
be determined experimentally by diffraction techniques23,24

as well as computationally.

When using V(r) to analyze noncovalent interactions, we
normally compute it on the surface of the molecule, which
we take, following Bader et al.,24 to be the 0.001 au
(electrons/bohr3) contour of the molecule’s electronic density.
A surface defined as a three-dimensional contour of F(r) has
the advantage that it reflects features specific to that molecule,
for example, lone pairs, π electrons, strained bonds, etc.

In a series of studies, it has been demonstrated that a
variety of condensed phase physical properties that depend
upon noncovalent interactions can be expressed quantitatively
in terms of the features characterizing V(r) on a molecular
surface, which we label VS(r).26,27 For example, empirical
measures of hydrogen bond donating and accepting tenden-
cies correlate well with the most positive values (VS,max)
associated with hydrogens and the most negative (VS,min) on
basic sites.28

SAPT Methodology. The SAPT method31 permits the
separation of interaction energies into physically meaningful
components, such as those arising from dispersion, electro-
statics, induction, and exchange. The SAPT interaction
energy is given by eq 3.

Eint )Epol
1 +Eex

1 +Eind
2 +Eex-ind

2 +Edisp
2 +Eex-disp

2 (3)

Some of these terms can be combined to give commonly
understood physical quantities. In this work, we define the
following:
E(elec) ) Epol

1

E(ind) ) Eind
2 + Eex-ind

2

E(disp) ) Edisp
2 + Eex-disp

2

E(exch) ) Eex
1 These four quantities refer to, respectively,

the electrostatic, induction, dispersion and exchange contri-
butions to the overall interaction energy.

In this work, we have utilized the SAPT technique to study
the relative contributions of the various interaction energy
terms in halogen-bonding systems. The systems studied here
are relatively large, thus the only reasonable basis set that
could be used for these computations is the aug-cc-pVDZ
basis of Dunning. It should be noted that when SAPT is used
with this medium -sized basis set, contributions from
dispersion will generally be underestimated by approximately
10%-15%. The version of the SAPT method employed in
this study utilizes electronic densities determined at the
Hartree-Fock level.

All interaction energies and SAPT computations were
carried out using the Molpro electronic structure package
(M06).30

Results

Tables 1 and 2 give (a) the computed bromine VS,max values
for a series of individual brominated benzene and pyrimidine
derivatives, (b) their interaction energies with acetone, (c)
the optimum Br · · ·O separations, and (d) the angles θ1 and
θ2. Here it can be seen that, as stated in the Introduction,
the substitution of various groups onto the bromobenzene
and bromopyrimidine rings has a very large effect upon
halogen bond strengths. Computed interaction energies range
from -1.80 (3,5-diaminobromobenzene) to -7.11 kcal/mol
(C4N2O2HBr, 4). There are several other important aspects
of these data that can immediately be seen in these tables.
One of the most pronounced patterns is the relationship
between interaction energies and Br VS,max values: Higher
VS,max (more positive σ-holes) result in complexes that are
more strongly bound. Also apparent is that the presence of
electron-withdrawing groups on the aromatic rings results
in higher bromine VS,max values and more negative interaction
energies, while the electron-donating NH2 substituent leads
to weaker interactions. In terms of geometries, there are two
prevailing trends: the bromine-oxygen separation (dBr · · ·O)
contracts and the angle θ2 become larger as the interaction
energy increases in magnitude (the latter of these two
relationships shows only moderate correlation). Note that the
Br · · ·O separations, dBr · · ·O, are all less than the sum of the
bromine and oxygen van der Waals radii, 3.37 Å,29 consistent
with the occurrence of a noncovalent interaction.

Relation of Electrostatic Potentials to Interaction
Energies. Figures 1 and 2 show the electrostatic potentials
on the molecular surfaces of nine of the molecules listed in
Tables 1 and 2. In each case, the VS,max on the bromine is
along the extension of its C-Br bond. The bromine VS,max

tends to increase relative to the parent molecule bromoben-
zene as electron-attracting components are introduced; these
may be substituents (Figure 1) or ring nitrogens (Figure 2).

Figure 1 displays, in order of increasing VS,max, the
electrostatic potentials on the molecular surfaces of six of
the bromobenzene derivatives. 3,5-diaminobromobenzene,
Figure 1A, has the weakest VS,max in Tables 1 and 2,
consistent with the electron-donating nature of the amino
group. Moving on to electron-withdrawing substituents, we
see that the five fluorines in pentafluorobromobenzene, Figure
1D, make the σ-hole more positive (VS,max ) 23.4 kcal/mol)
than do the two ortho cyano groups in 2,6-dicyanobro-
mobenzene (VS,max ) 22.1 kcal/mol), shown in Figure 1C.
In the bromopyrimidine framework, however, in which the
electron-attracting power of the cyano groups is comple-
mented by that of two ring nitrogens, putting two ortho cyano
groups on 5-bromopyrimidine framework, Figure 2B, in-
creases the bromine VS,max to 31.4 kcal/mol. Finally, the
introduction of carbonyl oxygens further strengthens the
bromine σ-holes; C6O4HBr (2) and C4N2O2HBr (4), in
Figures 1E and 2C, have VS,max of 38.5 and 45.6 kcal/mol,
respectively. The latter is the most-positive bromine VS,max

computed in this work.
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The bromines in Figures 1A-D and 2A are more typical
than are the others in Figures 1 and 2 in that they have rings
of negative electrostatic potential around their lateral sides,
while the surfaces of the bromines in Figures 1E and F and
2B and C are completely positive. These latter potentials
are a consequence of the strongly electron-withdrawing
substituents on the rings and have been noted earlier for
bromine and other halogens in such environments.6 For the
molecules in Tables 1 and 2, we find that the more
characterstic rings of negative electrostatic potential are no
longer present after the bromine VS,max reaches about 30 kcal/
mol.

As mentioned earlier, the data in Tables 1 and 2 show a
general tendency for the interaction energies to increase in
magnitude as the computed VS,max prior to interaction become
more positive. There are some exceptions, primarily involv-
ing those molecules having ortho substituents. In such cases,
there are often secondary interactions (favorable or unfavor-
able) between the acetone and the ortho groups that affect
the interaction energies.32 For a striking example, consider
3,5-dicyanobromobenzene and 2,6-dicyanobromobenzene
(Table 1). 3,5-dicyanobromobenzene, which has its cyano
groups meta to the bromine, has a VS,max of 25.4 kcal/mol.
The interaction energy with acetone is -3.7 kcal/mol. Its
ortho isomer, 2,6-dicyanobromobenzene, has a slightly
weaker VS,max of 22.1 kcal/mol, yet a stronger interaction
energy with acetone, -4.4 kcal/mol. This can be explained
by looking at the surface electrostatic potential of 2,6-
dicyanobromobenzene in Figure 1C. The negative potentials
of the cyano nitrogens overlap with that on the lateral sides
of the bromine, creating extended negative regions that can
interact favorably with one or more acetone hydrogens. This
complements the CdO · · ·Br interaction, resulting in a more
negative ∆E than for the 3,5-dicyano case.

An ortho substituent may also affect the bromine VS,max

and hence ∆E through an overlapping of potentials. Thus
the slightly lower bromine VS,max in ortho-chlorobromoben-
zene compared to the meta and para isomers may be caused
by the chlorine’s negative potential overlapping with the
positive one of the bromine σ-hole.

Figure 4 shows a plot of interaction energy versus bromine
VS,max for the 13 molecules lacking bulky ortho substituents.
The correlation is remarkably good, with a correlation
coefficient of 0.976. This demonstrates the importance of
the positive σ-hole, as reflected by the computed bromine
VS,max, in determining the energetics of the C-Br · · ·O
halogen bonds. When all 20 molecules are included, the
correlation coefficient drops slightly to 0.956. These cor-
relations indicate the role that electrostatics plays in these
interactions, whether or not there are secondary ones.

Relation of Binding Energies to Geometric Parameters.
Figures 5-7 show the potential energy curves for five of
the complexes, with respect to three geometrical parameters:
the bromine-oxygen separation (dBr · · ·O), the Br · · ·O-C
angle (θ2), and the C-Br · · ·O angle (θ1). These complexes
are those of acetone with 3,5-diaminobromobenzene, bro-
mobenzene, pentafluorobromobenzene, meta-C6O2H3Br (2),
and C4N2O2HBr (4). These complexes are examples of
halogen bonding interactions ranging from very weak (3,5-

diaminobromobenzene, ∆E ) µ1.80 kcal/mol) to very strong
(4, ∆E ) µ7.11 kcal/mol). The general tendency for stronger
halogen bonds to have shorter optimum Br · · ·O separations
can clearly be seen in Figure 5. It is also interesting to note
that these halogen bonding interactions act over a relatively
large distance, with the stronger ones still discernible at a
radial distance of 7.0 Å.

The curves given in Figure 6 show that the interaction
energy behaves is a shallow function of the Br · · ·O-C angle
(θ2) between the values of approximately 115° and 180°.
For these complexes, the difference between the interaction
energies at the optimum angle and at 180° ranges from -0.32
(2) to -0.81 kcal/mol (3,5-diaminobromobenzene). As
indicated in Tables 1 and 2, there is some tendency for the
optimum Br · · ·O-C angles to be larger for complexes with
stronger interaction energies than for more weakly bound
ones. These phenomena can be explained by looking at the
electrostatic potential on the molecular surface of acetone,
shown in Figure 8. The most striking feature is the strong

Figure 4. Plot of interaction energy vs bromine VS,max for the
13 molecules without ortho substituents (other than F). R )
0.976.

Figure 5. Potential energy curves for interaction energies with
acetone as a function of the Br · · ·O separation for complexes
of 3,5-diaminobromobenzene (blue), bromobenzene (red),
pentafluorobenzene (green), meta-C6O2H3Br, 2 (purple), and
C4N2O2HBr, 4 (yellow).
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band of negative potential, shown in purple, along the outer
portion of the oxygen, extending 60° to either side of the
CdO bond. This region has two minima, VS,min, with values
of -36.6 kcal/mol; however they are very shallow minima.
This explains the fact that, although our calculations find
the preferred CdO · · ·Br angles for complexes with acetone

to be between 119° and 129°, the binding energies remain
fairly strong as these angles increase from their optimum
values to 180°. The slight trend of the optimum binding angle
for more strongly interacting complexes to be larger may
be attributable to the fact that stronger halogen bonding
interactions are generally more electrostatic in nature and
thus the bromine σ-hole has a greater tendency to align with
the most negative regions in the space surrounding the
carbonyl oxygen. These carbonyl oxygen global minima
(Vmin) are at angles (C-O-Vmin) of ∼127°.

A final observation that can be made from the data in
Figure 6 is that the potential energy curve for the 2 · · · acetone
complex is significantly shallower (although much more
negative) than that of the pentafluorobromobenzene complex.
The electrostatic potentials for these two molecules (Figure
1D and E) show that 2 does not have a typical σ-hole, with
a ring of negative potential around the bromine. The fact
that the entire bromine is positive in 2 allows it to interact
attractively with the acetone oxygen over a wider range of
angles.

Figure 7 shows binding energies as functions of the
C-Br · · ·O angle (θ1). For all of the complexes, the optimum
value of θ1 is 180°, which corresponds to the optimal
alignment of the bromine σ-hole with the carbonyl oxygen.
The strengths of the interactions decrease rather sharply as
θ1 contracts, with ∆E for the weaker interactions (3,5-
diaminobromobenzene and bromobenzene) reaching negli-
gible values at 140°. This trend can clearly be attributed to
the fact that the bromine σ-holes are no longer oriented
toward the carbonyl negative charge density at low θ1. As
might be expected, the interaction energy falls off more
slowly for the 2 · · · acetone complex than for that of pen-
tafluorobromobenzene. This is the result of the overall
positive potential found on the bromine atom of 2, which
can have an attractive electrostatic interaction over a wider
range of the θ1.

On the other hand, the strength of the 4 · · · acetone complex
is highly dependent upon the strong electrostatic interaction
with the more localized positive σ-hole of the bromine (VS,max

) 45.6 kcal/mol). Figure 2C shows that the region of
maximum positive potential on the bromine of 4 is relatively
small. This explains the relatively sharp falloff for the
interaction energy of this complex as a function of θ1.

Comparison of Halogen Bonding and Hydrogen
Bonding. It is interesting to compare the properties of
halogen bonds with their, more ubiquitous, counterparts,
hydrogen bonds. These types of intermolecular interactions
evidently share several characteristics, most notably, both
are interactions that occur between two atoms, which
distinguishes them from general dispersion interactions and
stacking interactions, which generally involve several atoms
on both monomers. Another characteristic shared by both
these types of noncovalent interactions is a large contribution
of electrostatic forces to the overall interaction, although it
should be noted that the electrostatic contribution to hydrogen
bonding interactions is generally greater than that for most
halogen bonding interactions.

Table 3 shows the interaction energies, dX · · ·O distances,
and X · · ·O-C (θ2) angles for the complexes of bromoben-

Figure 6. Potential energy curves for interaction energies with
acetone as a function of the Br · · ·OdC angle angle θ2 for
complexes of 3,5-diaminobromobenzene (blue), bromoben-
zene (red), pentafluorobenzene (green), meta-C6O2H3Br, 2
(purple), and C4N2O2HBr, 4 (yellow).

Figure 7. Potential energy curves for interaction energies with
acetone as a function of the C-Br · · ·O angle angle θ1 for
complexes of 3,5-diaminobromobenzene (blue), bromoben-
zene (red), pentafluorobenzene (green), meta-C6O2H3Br, 2
(purple), and C4N2O2HBr, 4 (yellow).

Figure 8. Electrostatic potential of acetone. Color ranges, in
kcal/mol, are purple, more negative than -35; blue, from -35
to -30; green, from -30 to -20; yellow, from -20 to 0; red,
greater than 0. The oxygen is toward the viewer.
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zene, pentafluorobromobenzene, benzene, and pentafluo-
robenzene with acetone. Here it can be seen that, for both
cases, the halogen-bonding interactions are predicted to be
slightly stronger than the hydrogen-bonding interactions; in
the unsubstituted case (bromobenzene and benzene), the
halogen bonding interaction energy is about 0.2 kcal/mol
lower than that for the hydrogen bonding case, while the
difference is about 0.1 kcal/mol for the fluorine substituted
complexes. As would be expected, the dX · · ·O distances are
substantially shorter for the hydrogen-bonding complexes (by
0.65-0.70 Å). Interestingly, the X · · ·O-C angle is larger
for the bromobenzene complex than for the benzene one by
seven degrees, while for the fluorine substituted complexes
the X · · ·O-C is six degrees smaller for the halogen bonding
complex compared to the hydrogen bonding one. These
results may be a result of intermolecular interactions, likely
to be more important when the molecules are closer together,
as they are in the hydrogen bonding cases.

SAPT Results. Table 4 gives interaction energy decom-
positions in terms of symmetry-adapted perturbation theory
(SAPT/aug-cc-pVDZ) for the complexes of bromobenzene
and 4 with acetone. The most important aspect of these data
is the fact that the interaction of 4 is much more electrostatic
in nature than that of bromobenzene (by about a factor of
4). This result is not unexpected because the bromine VS,max

for 4 is so much larger than that of bromobenzene (see Tables
1 and 2 and Figures 1B and 2C). The other three SAPT terms
are also larger for 4 than for bromobenzene. The increase in
induction is most likely caused by a larger degree of charge
transfer for the 4 · · · acetone complex. The increases in both
the dispersion and exchange terms can be attributed to the
fact that in the 4 · · · acetone complex, the bromine is in much
closer to the acetone oxygen than in the bromobenzene
complex.

These results are in agreement with those in earlier work
by Riley and Hobza.11 There it was found that in the

interaction of unsubstituted bromomethane with formalde-
hyde, the SAPT electrostatic term contributes about 26% less
than the dispersion term. Upon substitution of three fluorines
to bromomethane to form F3CBr, the size and positive
potential of the bromine σ-hole increases significantly.
Likewise, the electrostatic component of the interaction
increases considerably, contributing about 37% more than
dispersion.

Conclusions

The main conclusion to be drawn from this investigation is
that the strength and character of halogen-bonding interac-
tions can be influenced to a great extent through the
introduction of various substituents onto an aromatic ring
bearing bromine (or presumably other halogens such as
chlorine and iodine). The range of interaction energies for
the substituent configurations used in this study is quite large,
varying from -1.80 kcal/mol (3,5-diaminobromobenzene)
to -7.11 kcal/mol (C4N2O2HBr, 4). This result has great
implications in the fields of drug design and crystal engineer-
ing, in which halogen bonding interactions have been the
subject of intense research because of their unique properties
and their potential in the development of novel pharmaceu-
ticals and materials.

The principal mechanism for the modulation of halogen
bond strengths by aromatic substitution involves changes in
the electron density on bromine. It can be seen by studying
the electrostatic potentials of these molecules that the
presence of electron-withdrawing and -donating substituents
greatly affects the electrostatic potential in the space around
bromine (and the rest of the system). The introduction of
different substituents into these systems produces a broad
spectrum of bromine VS,max values (which measure the
maximum positive potential found on the bromine surface),
ranging from 4.9 kcal/mol (3,5-diaminobromobenzene) to
45.6 kcal/mol (C4N2O2HBr, 4). These VS,max values correlate
very well with interaction energies, showing that the
electrostatic properties of a possible halogen-bonding mol-
ecule are critical to its binding behavior. These findings are
supported by SAPT interaction energy decompositions, which
demonstrate that the electrostatic component of halogen
bonding changes substantially upon substitution of a strong
electron-withdrawing group or ring atom.

In cases where an electron-donating substituent (NH2), no
substituent (H), and weakly electron-withdrawing substituents
(OH, Cl) are present, the bromine exhibits a conventional
σ-hole, which varies greatly in size and in positive potential
(VS,max) and for which the bromines have rings of negative
potentials around their lateral sides. For stronger electron-
withdrawing substituents (dO, CN), the entire bromine
acquires a positive potential, with a higher VS,max, which leads
to very stable halogen-bonding interactions. As would be
expected, electron-donating groups tend to weaken halogen
bonding, while electron-withdrawing substituents lead to
stronger interactions. It should also be noted that for
(unsubstituted and substituted) bromopyrimidines, which
contain two electron-attracting nitrogens within their aromatic
rings, the σ-hole is generally larger and more positive than
for the corresponding bromobenzene structures.

Table 3. Comparison of Halogen-Bonding and
Hydrogen-Bonding Geometrical Parameters and Binding
Energiesa

molecule
interaction

energy
X · · ·O

separation
X · · ·OdC
angle θ2

halogen bond
bromobenzene -2.23 3.15 120
pentafluorobromobenzene -4.08 2.95 124

hydrogen bond
benzene -2.01 2.50 113
pentafluorobenzene -3.99 2.25 130

a The interaction energies are in kcal/mol, Br · · ·O separations in
angstroms, and angles θ2 in degrees.

Table 4. Computed Symmetry-Adapted Perturbation
Theory (SAPT) Interaction Energy Decomposition Values
for Halogen-Bonding Complexesa

SAPT term C6H5Br · · ·OdC(CH3)2 HC4N2O2Br · · ·OdC(CH3)2

E(elec.) -2.44 -10.10
E(ind.) -0.61 -1.90
E(disp.) -2.56 -3.67
E(exch.) 3.69 8.28
E(SAPT) -1.92 -7.39

a In kcal/mol.
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As was expected, the optimum C-Br · · ·O angles for
halogen bonding complexes was found to be 180° (Figure
7), corresponding to an optimal interaction between the
acetone oxygen and the bromine σ-hole. The strengths of
these interactions decrease rather sharply as the C-Br · · ·O
angle becomes smaller and the σ-hole can no longer interact
with dO. The CdO · · ·Br angles for these complexes were
observed to be in the range between 119° and 129°, with a
tendency for stronger halogen-bonding interactions to assume
larger angles. This trend is most likely attributable to the
fact that stronger halogen bonds, with σ-holes that are more
positive, will have a stronger tendency to line up with the
most negative region of the acetone oxygen (found at a
CdO · · ·Br angle of ∼127°).
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Abstract: We present a novel computational procedure, general, automated, and robust, for
the analysis of local and global properties of the electron localization function (ELF) in crystalline
solids. Our algorithm successfully faces the two main shortcomings of the ELF analysis in crystals:
(i) the automated identification and characterization of the ELF induced topology in periodic
systems, which is impeded by the great number and concentration of critical points in crystalline
cells, and (ii) the localization of the zero flux surfaces and subsequent integration of basins,
whose difficulty is due to the diverse (in many occasions very flat or very steep) ELF profiles
connecting the set of critical points. Application of the new code to representative crystals
exhibiting different bonding patterns is carried out in order to show the performance of the
algorithm and the conceptual possibilities offered by the complete characterization of the ELF
topology in solids.

I. Introduction
Due to the high coordination indexes and to the numerous
atom-atom contacts, the presence of different bonding types
is a common and genuine feature of solids which hampers
their characterization when compared with the molecular
realm. Performing a rigorous qualitative and quantitative
classification of these bonds, based on a unique theoretical
formalism, has revealed itself to be a challenge and a source
of debate.1 The localization of orbitals leads to ambiguities
in many solid-state problems,2 a reason for which the
topological analysis in real space has been shown to be a
very fruitful approach in the last few decades. Among these
methods, the widest-spread approach has been to consider
the topological analysis of the electron density (AIM) as
developed by Bader and co-workers,3,4 according to which
the existence of a bond is associated to the presence of a
bond path in the stable structure of the solid. It has also been
long recognized that chemical insight into the nature of the

chemical bond can be gained by resorting to the electron
localization function (ELF).5

The topological analysis of ELF, although spread among
molecules, has been scarce in the solid state due to the major
computational difficulties imposed by periodicity.5-7 Some
noticeable applications concern relevant geophysical prob-
lems, as the identification of favored docking sites in SiO2

polymorphs,8,9 whereby protons were found to prefer the
proximities of lone pairs. However, the ability of this function
to reflect interactions, as well as the translational symmetry
of crystalline systems, leads to an intricate pattern of ELF
critical points and of irregular ELF profiles that hamper their
automated localization and the integration of the related
basins in which the 3D space of the unit cell is divided.

Our work has been focused on the development of a
computational algorithm attempting to fulfill the gap existing
between the ELF topological analyses of bonding in the
molecular and the crystalline realms. A thoughtful analysis
of the nature of the problem is critical thereto. It was already
recognized by Nathaniel et al.10 that algorithms coming from* Corresponding author. E-mail: mateo@fluor.quimica.uniovi.es.
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Bader analyses mainly fail at the inner and outer core, whose
sphericity remains practically unaltered under the crystal
environment, leading to nearly degenerated surfaces and
critical point clustering. A hybrid algorithm that combines
previous methods and a new approach for the determination
of the local and global properties of the core topology is
proposed for the complete determination of the ELF topol-
ogy. Due to the intricate and heterogeneous nature of the
function, special emphasis has been given to the design of a
robust algorithm, of applicability to a wide variety of crystal
bonding patterns.

The organization of the paper is as follows. First, we will
introduce the basic concepts of the ELF topology stressing
the computational difficulties associated with the main
differences between the ELF in the molecular and the
crystalline realms. Then, we explain the algorithms devised
to overcome these problems for the localization of critical
points and the integration of basins. Next, some examples
of bonding analyses in prototypical solids will be presented
to show the robustness and performance of the method.
Finally, conclusions will be drawn and future applications
advanced.

II. ELF Topological Analysis in Crystals

The electron localization function (ELF) was originally
designed by Becke and Edgecombe to identify “localized
electronic groups in atomic and molecular systems”.11 It
relies, through its kernel, to the laplacian of the conditional
same spin pair probability scaled by the homogeneous
electron gas kinetic energy:

�σ(r))
Dσ(r)

Dσ
0(r)

(1)

in which

Dσ(r)) τσ(r)- 1
4

(Fσ(r))2

Fσ(r)

appears to be the difference of the actual definite positive
kinetic energy τσ(r) and the von Weizsäcker kinetic energy
functional,12 whereas

Dσ
0(r)) 3

5
(6π2)2⁄3Fσ

5⁄3(r)

is the kinetic energy density of the homogeneous electron
gas. This formulation led Savin to propose an interpretation
of ELF in terms of the local excess kinetic energy due to
the Pauli repulsion, enabling its calculation from Kohn-Sham
orbitals.2,13,14 Orbital based interpretations of ELF have been
proposed by Burdett15 and more recently by Nalewajski et
al.16 who considered the nonadditive interorbital Fisher
information. Another route pioneered by Dobson17 explicitly
considers the pair functions. It has been independently
developed by Kohout et al.18,19 and by one of us20 allowing
the extension of ELF to correlated wave functions.21

From a simple statistical viewpoint, the concept of
electron density localization at a given position r relies
on the standard deviation of the electron density integrated
over a sampling volume V(r) encompassing the reference

point and containing a given quantity of matter, in other
words a given charge q. The smaller the standard
deviation, the higher the localization. Instead of the
standard deviation, it is advantageous to use its square,
the variance σ2, which can be expressed as the expectation
value of the variance operator:22

in which Nj (V(r)) ) q and Πj (V(r), V(r)) are respectively
the one particle and two particle densities integrated over
the sample V(r). In the expression of the variance given
above, only Πj (V(r), V(r)) is function of the position and
therefore -q2 + q can be regarded as a constant and
deleted. The integrated pair density is the sum of an
opposite spin contribution, 2Πj R�(V(r),V(r)) almost pro-
portional to q2 and of a same spin contribution
Πj RR(V(r), V(r)) + Πj ��(V(r), V(r)) which has numerically
been shown proportional to a function of the position, say
cπ(r), times q5/3. In the limit q ) 0, the ratio

Πj (V(r), V(r))

q5⁄3

tends to the spin pair composition, cπ(r), a local function
independent of the size of the sample.20 The ability of this
function to localize “electronic groups” can be illustrated
by a very simple example in which two R and two � spin
electrons are confined in a box of volume Ω. For the sake
of simplicity we assume the electron density probability to
be uniform, i.e. F(r) ) 4/Ω without spin polarization (FR(r)
) F�(r) ) 2/Ω), such as the opposite spin pair functions,
ΠR�(r1, r2) ) Π�R(r1, r2) ) 4/Ω2 are constant. This model
enables to consider two localization cases. On the one hand,
the opposite spin pairs are delocalized over the box and the
same spin pair functions are constant: ΠRR(r1, r2) )
Π��(r1, r2) ) 2/Ω2 and therefore cπ(r) is also constant. On
the other hand, each opposite spin pair occupies one-half of
the box such as the following:

ΠRR(r1, r2))Π��(r1, r2))

{ 0 r1, r2 ∈ same half box

4 ⁄ Ω2 r1, r2 ∈ different half boxes (3)

It follows that

cπ(r){)0 r ∉ the boundary

∝ 4 ⁄ Ω2 r ∈ the boundary
(4)

which enables one to locate the boundary between the two
opposite spin pair regions.

For the Hartree-Fock wave function, it can be easily
demonstrated20 that

�σ(r) ≈ cπ(r) (5)

The localization function itself is obtained through the
transformation of �σ(r) into a Lorentzian function

η(r)) 1

1+ �σ
2(r)

(6)
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so that it tends to 1 in those regions where the localization
is high and to small values at the boundaries between such
regions.

The arguments developed above indicate that η(r) can be
used to recover regions of space associated to electron pairs
as they emerge in the Lewis’s description.23 The dynamical
system theory24 has been used in this context to provide a
partition of the direct geometrical space into non overlapping
basins of attractors25,26 which can be thought of as electronic
domains corresponding to the chemical entities of the Lewis’s
picture. Moreover, it has been recently shown that the
electrostatic repulsions between these basins provide a
justification of the valence shell electron pair repulsion
(VSEPR) rules.27 The ELF basins belong either to the core
or valence shells of atoms in molecules. The valence basins
V(A, ...) encompassing a given atomic core basin C(A)
(which can be constituted by K, L, ... shells) form the valence
shell of atom A. In agreement with the Lewis’s picture
V(A, ...) may belong to several atomic shells. The synaptic
order of a valence basin is the number of atomic shells to
which it belongs. The hierarchy of the ELF basin is given
by the bifurcation diagrams28,29 which provide the con-
nectivity of the different fragments of the investigated system.

Within the dynamical system framework, pioneered by
Bader for the analysis of the electron density,3 a formal
analogy is made between a vector field bounded on a
manifold and a velocity field. In the present case, the vector
field is the gradient field of the ELF, ∇ η(r), and the manifold
the 3-dimensional geometrical space. This is the reason why
this point is also known as attractor of the gradient field.
Attractors belong to a subset of special points of the field,
named critical points (CPs), characterized by a null gradient.
Contrary to wandering points (∇ η * 0) critical points may
act as a source or a sink of more than one gradient path,
depending on their nature. The number of nonzero eigen-
values of the Hessian, or rank, determines its dimensionality,
and the sum of the signs of the Hessian eigenvalues
characterizes the capability to receive or send gradient paths.
In a stable 3D topology, this gives rise to the following
possibilities: (3, -3) for local maxima or attractors, (3, +3)
for local minima, and (3, -1) and (3, +1) for saddle points
in one or two dimensions, respectively.

Indeed, two types of topological information are obtained:
local and global. Local information is gathered by evaluating
density properties at distinctive points where the gradient
vanishes. Global information is acquired from volume
integration of property densities over spatial fragments. Since
the topological analysis of the ELF gradient field25,26 yields
basins that can be associated to Lewis entities, the integration
of the density (F) over their volume (Ωi) assigns a population
(Nj ) to bonds, lone pairs and atomic shells:

Nj (Ωi))∫Ωi
F(r)dr (7)

In spite of the lack of a clear physical significance of the
definition of the zero flux surfaces of ELF, it was demon-
strated by Kohout and Savin30 that these populations follow
the expected values and tendencies from the Aufbau principle
and the VSEPR theory.

The properties of the gradient dynamical system are
complemented in the context of the ELF topology with the
interpretation derived from the f-domain28 concept, that
enables chemical units in the system to be recovered, as well
as to characterize the basins according to common chemical
knowledge. Introduced by Mezey31 within the AIM frame-
work, the concept of an f-domain accounts for the volume
enclosed by an isosurface of a certain value of η ) f. As the
value f increases, successive splitting of the initial domains
take place until all of them contain one, and only one,
attractor. This process in called reduction (and the final
domains, irreducible), and the order in which it takes place
reveals the nature of the interactions taking place in the
system and the relationship between basins. The turning
points of the splitting corresponds to that of the highest (3,
-1) point of the separatrix connecting the basins. According
to the value of η at these nodes, also known as bips (bond
interaction points),32 a bifurcation tree can be constructed
that reveals the basin hierarchy at a glance. The difficulties
that the localization of all the bips entail in solids have
refrained the use of bifurcation diagrams for their bond
analysis in spite of the wide range of possibilities this would
obviously offer5 due to the intricate and colorful bonding
patterns present in the solid state.

There are several factors that draw a clear line between
the molecular and the crystalline realms as far as the study
of their topology is concerned. On the one hand, and due to
the periodicity of the solid, an infinite number of critical
points is expected. The search has to be, therefore, limited
to a finite part of the solid (generally the unit cell or one
part of it). This fact obliges the implementation of periodic
contour conditions that ensure the recuperation of the points
escaping this region of space. Furthermore, for the electron
localization function defined over the crystalline unit cell,
the Morse relationship that holds reads as follows:

n(3,-3) - n(3,-1) + n(3,+1) - n(3,+3) ) 0 (8)

n(3,-3)g 1, n(3,-1)g 3, n(3,+1)g 3, n(3,+3)g 1 (9)

being n the number of critical points of a given type. Just
like in the topology of molecules, the (3, -3) positions are
associated to Lewis entities of the crystal. The existence of
(3, +3) points is ensured by the Weierstrass theorem, which
accordingly enforces the presence of the whole set of types
of critical points of rank 3 (eq 9).

The split of the critical points imposed by symmetry had
already been observed when passing from the atomic to the
molecular state. The neighboring atoms force the degenerated
atomic ELF maxima to collapse onto nondegenerated ones.25

Due to the high coordinations in solid state, great concentra-
tion of critical points cluster in small volumes. This great
variety and amount of critical points per unit cell sets the
main algorithmic difference between solids and molecules.4

Thus, algorithms as the one used in AIMPAC33 where critical
points are searched by an exhaustive formation of pairs, trios,
and quartets of atoms are not suitable due to the translational
periodicity of the system, and new algorithms have to be
designed that benefit from the properties induced by the
translational symmetry. For example, the periodicity of the
solid ensures the cancellation of the gradient at the fixed
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Wyckoff positions, providing some a priori information on
the CPs of the system. As far as integrations are concerned,
the periodicity in the solid assures finite values for all the
basins in the crystal, so that no thresholds are needed to
delimit volumes because all basin properties are well defined.

III. Algorithm

A. Construction of the Critical Point List. The cluster-
ing of critical points that takes place in the ELF topology of
crystals gives rise to two undesirable computational features:
(i) finding a great number of solutions of a non linear system
of equations within a small interval of the domain of the
variables and (ii) being able to accurately discard equivalent
solutions. Since the valence region has been found to be
exhaustively tracked by algorithms analogous to those
employed for the analysis of the topology induced by the
electron density, the complete characterization of the ELF
topology in the solid requires a hybrid method, with a
combination of core-valence approaches. In the first place,
we have resorted to a recursive and exhaustive method
implemented in our laboratory34 for the construction of the
critical point list of the electron density field of crystals. It
starts with the division of the unit cell (or its irreducible part)
into all the irreducible tetrahedra it is formed of. Then, all
the 0-3-dimensional simplexes are generated in order to
perform an iterative barycentric search in each of them: a
critical point is searched inside the N simplex that gives rise
to a new subdivision into N + 1 simplexes that share this
barycenter as a common vertex. An infinite recurrence is
avoided by introducing a limiting number of subdivisions.
This method would ideally be able to localize all the critical
points of the crystal, as long as the algorithm is able to find
one critical point, if present, inside a simplex. This is the
case of the valence region but not of the cores. As the
simplexes evolve toward the core regions, the concentration
of steep gradients is such that the recursive procedure fails
in exhausting the solutions.

However, the landscape of the ELF topology in the cores
is extremely simple and constant from one crystal to another,
enabling to devise a complementary search that completes
the set of critical points found in the first step.10 Cores are
characterized by a nearly spherical shape of the shells
enclosed within it. Provided that this structure remains nearly
unperturbed in the crystalline environment, we can perform
a second CP search around the nuclei, seeding the shell radii
as starting points. In order to devise a completely automated
search, these positions are internally approximated around a
spherical grid by the ∂η(θ, φ)/∂r ) 0 points. The resulting
hybrid method turns out to be highly efficient and able to
automatically provide complete sets of critical points. Ill
cases are mainly related to heavy elements inner cores, whose
shells are very abrupt. Although these points do not provide
chemical insights, a wise set of parameters provided by the
user in order to accurately determine the shell radii and
discard equivalent positions would provide the fussy user
with the answer.

If the first search is carried out in the irreducible Wigner
Seitz cell, some of the borders of the tetrahedra may coincide,

leading to redundant critical points. Repeated critical points
would also be found according to their multiplicity in the
restricted second search and in the barycentric one, were it
carried out in the unit cell. Thus, all temporal positions are
subsequently filtered for repetitions with the help of punctual
symmetry operations and applying cutoffs to avoid redun-
dancies due to numerical inaccuracies. To the best of our
knowledge, this algorithm has been the first to provide
complete lists of critical points of the ELF induced topology.
Not only does it output the position of the maxima for the
ulterior integration of their basins, but it also informs about
the delocalization between them.

The concepts of localization domain and bifurcation tree
have been rarely used in the solid state, in spite of their
potentiality, due to the difficult determination of the bip
points by graphical approaches. In fact, its use was already
encouraged by Gatti in order to shed light into the nature of
the interactions governing the structure of molecular solids.5

The complete characterization of the topology of the ELF
gradient offered by our core-valence algorithm holds the
key for a direct construction of bifurcation trees35 within
the crystalline realm, as proved in our recent studies on the
pressure behavior of BeO phases36 and the CO2 polymeri-
zation.37

B. Basin Integration. The integration of the basins of
the electron density has been the object of numerous
publications due to the difficulty of reaching a balance
between computational time and accuracy. The first attempts,
led by Biegler-König et al.,33,38 were based on the spatial
localization of the zero flux surfaces. Less time-consuming
proposals were subsequently put forward by the group of
Popelier et al., who devised numerous ingenious ways to
tackle the problem, from the analytical fitting of the
surfaces39,40 to the discretization of basins into polyhedra.41

Grids have also been a very popular modality33,38 due to
their speed. Indeed, the integration of more complex topolo-
gies has been mainly addressed by means of the later

Figure 1. Zone of application of each of the methods
described in the text in the NaBr crystal. Method I is able to
resolve the valence topology (4th N-shell of Br- and L-shell
of Na+) flat profiles in the shell basins in the θ, φ direction
represented in the inset are avoided by means of method II,
that enables a more accurate and fast integration of the Br-

outercore. The localization of the quasi-degenerated zero flux
surfaces in the inner core of Br- K-shell is avoided by the
spherical approximation of method III.
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approach42,43 to the detriment of accuracy.44 Since sharp as
well as nearly degenerated basins are a common feature of
the ELF induced topology, we have decided to recover the
more accurate ELF basins properties, as well as an explicit
picture of their shape provided by the first set of methods,
which are known to deal properly with complicated basin
shapes and heterogeneous function profiles, and then using
chemical knowledge to properly solve the problem.

Valence basins occupy broad spaces and their profiles are
smooth enough to be accurately tracked by the type of
methods mentioned above. Its ability to integrate valence
basins is highlighted in Figure 1 as the proper method to
obtain basin properties of the 4th N-shell of Br- in NaBr
under the name of method I. Due to the colorful valence
shapes depending on the bonding type, the bisection
method40 has been preferred due to its accuracy, and in spite
of its computational cost. First, and making use of the
previous algorithm for the determination of the (3, -3)
points, a mapping is carried out for each attractor, centering
at its location a polar coordinate system. Then, this sphere
is divided into a regular nθ × nφ grid, whose radial lengths
are found according to the flux lines properties. Since all
the gradient paths that end up at the given attractor belong
to its basin, it suffices to bracket the point r(θ, φ) at which the
flux lines start leading to another (3, -3) point. Given the
fact that we have reduced the problem to one dimension, a
bisection search is, due to its reliability, mostly suited for
this task. It should be noted that the wide range of valence
basin shapes difficulties an automated setting of the bisection
initial limits and would boost Newton-Raphson weaknesses
at long distances, so the point fulfilling the condition ∂η/∂r
) 0 can be used as the first approximation for setting the
limits. Finally, and once the radial limit has been found, the
Gaussian-Legendre quadrature, proposed by Biegler-König
et al., is used for the integration of the coordinates.33,38

It is always said that the bisection search succeed by
mediation of the mean value theorem. However, it must be

noted that the bisection method defined above is coupled to
a flux integration for the bracketing process. It is at this step
that the above method finds difficulties in some topologies.
More specifically, and as advanced above, the integration
of core shells entails serious problems due to the planarity
of the ELF profile around the shells (see inset for the
direction perpendicular to the NaBr interionic axis in Figure
1).Thenearlynonzeroderivativedistorts theNewton-Raphson
flux integration, that in the best of these cases provides an
inaccurate attractor position, complicating the coordinates
comparison for the bisecant point discarding, or even worse
integrates to a wrong point. The punctual core attractors of
the crystal (shells > K) descend from a perturbation induced
by the environment of the atomic shells in vacuo, where they
are organized in a degenerated sphere. The potential from
the nearby attractors gives rise to a collapse onto the (3, -3)
shell attractors. This is due to the changes in the density
and the kinetic energy upon the long-range influence of an
external potential. These increments are magnified along the
interattractor direction (r), where the term ∂φ/∂r is vanish-
ingly small, being φ the interacting molecular orbital.45 This
steepest increase in the density and decrease in the kinetic
energy in the parallel direction gives rise to an increase in
the ELF and, therefore, to the attractor collapse on the in-
ternuclear line. In general, the greater the potential, the larger
the deformation and the easier the integration of the shell
basin. As depicted in the inset for method II in Figure 1, the
deviation of the (3, -3) points is greater than that of the
connecting (3, -1) points. This is easily taken into account
by the perturbative changes explained above, whose effect
is shifting the attractor towards the source of the potential.

If more shells are present in the core, the intermediate ones
are subject to the attractive potential from the neighboring
nuclei as well as the repulsive potential from other shell
attractors, and more complicated topological patterns may
arise (e.g. ligand opposed core charge concentrations).46,47

However, in these cases, the distances are large enough as
to induce very little deformations and the spherical shape is
nearly preserved. Hence, once again, the most complicated
computational situations arise from inner core shells of heavy
atoms as well as from ionic interactions. A change of gradient
search procedure is not convenient due to the fact that the
integration only fails along a certain angular interval.
Therefore, a complementary integration method seems more
appropriate. At this point, a previous proposal of the authors48

to take the basin shells of solids as one chemically meaning-
ful superbasin holds the key for the design of the integration
procedure. From a conceptual point of view, the partition of
core into basins is a mere consequence of symmetry.
Furthermore, it has been shown that this split is not
chemically meaningful48 but just a mere artifact induced
by the symmetry. If all the basins belonging to the same
shell are integrated together, the approximated sphericity,
for which the above bisection was developed, is recovered,
and so are the curved ELF profiles. This algorithm is
designated as method II in Figure 1 and is most appropri-
ate for the integration of densities in outer shells, such as
the M- and L-shell of Br- on the figure. Besides, this
method increases the accuracy of the integrations, other-

Figure 2. Schematic figure of the code operation.
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wise endangered by the low performance of the quadrature
at high density cusp points,40 and fastens the general
procedure, since less integrals in low symmetry crystals
are needed. For this purpose, the assignation of basin
attractors to a certain nucleus turns out to be crucial,
allowing the bipartition procedure to be applicable in spite
of the basin attractor and the center of integration not
being the same.

As the number of shells increases, the potential induced
by the environment is screened and the inner shells remain
degenerated. Hence, the above bipartition procedures are no
longer applicable, since it fails to accurately locate the
extremes. Furthermore, the bracketing of the bisection
becomes extremely complicated due to the clustering of inner
separatrices. The combination of the above algorithms is to
be complemented by a third method in the case of heavy

Table 1. Set of Critical Points Found for an Ionic (fcc LiF, a ) 4.017 Å) and a Covalent Crystal (diamond C, a ) 3.102 Å)a

LiF C (diamond)

Type x y z M η CHM Type x y z M η CHM

(3, -3) 0.0000 0.0000 0.0000 4 0.9999 C(Li) (3, -3) 0.1250 0.1250 0.1250 8 0.9999 C(C)
(3, -3) 0.5000 0.5000 0.5000 4 0.9999 C(F) (3, -3) 0.0000 0.2500 0.2500 16 0.9352 V(C,C)
(3, -3) 0.0000 0.1256 0.5000 24 0.8555 V(F) (3, -1) 0.0745 0.3750 0.3750 48 0.5954 C-V
(3, -1) 0.5000 0.2500 0.2500 24 0.0280 F-F (3, -1) 0.0710 0.1790 0.1783 32 0.0833 V-V
(3, -1) 0.5000 0.4114 0.4114 48 0.8549 V(F)-V(F) (3, +1) 0.2403 0.2403 0.2405 32 0.4675 ring
(3, -1) 0.1805 0.0000 0.0000 24 0.1463 Li-F (3, +1) 0.0293 0.1250 0.1250 48 0.0736 ring
(3, -1) 0.4548 0.0000 0.0000 24 0.1303 C(F)-V(F) (3, +1) 0.2500 0.2500 0.5000 16 0.0427 ring
(3, +1) 0.1804 0.3196 0.3196 32 0.1533 ring (3, +3) 0.3750 0.3750 0.3750 8 0.0236 cage
(3, +1) 0.0000 0.3576 0.3576 48 0.0095 ring (3, +3) 0.1829 0.1829 0.1779 32 0.0670 cage
(3, +1) 0.4277 0.5723 0.5723 32 0.8548 ring
(3, +1) 0.4681 0.4681 0.4988 48 0.1303 ring
(3, +3) 0.2500 0.2500 0.2500 8 0.0129 cage
(3, +3) 0.1210 0.3790 0.3790 32 0.0083 cage
(3, +3) 0.4739 0.0261 0.9739 32 0.1303 cage

Morse 0 0

a Positions (x, y, z), multiplicities (M), ELF value at the CP (η), and chemical meaning (CHM) are collected.

Table 2. Set of Critical Points Found for a Metallic (fcc Al, a ) 4.086 Å) and a Molecular Crystal (Pa3j N2, a ) 5.0 Å)a

Al N2

type x y z M η CHM type x y z M η CHM

(3, -3) 0.0000 0.0000 0.0000 4 0.9999 K(Al) (3, -3) 0.0530 0.0530 0.0530 8 0.9999 C(N)
(3, -3) 0.5000 0.5000 0.2738 24 0.6805 V(Al) (3, -3) 0.0226 0.4774 0.4553 24 0.8867 V(N, N)
(3, -3) 0.3035 0.3035 0.0000 48 0.7234 V(Al) (3, -3) 0.6402 0.3598 0.8629 8 0.9868 V(N)
(3, -3) 0.0000 0.4246 0.5000 24 0.8697 L(Al) (3, -3) 0.4626 0.0374 0.5000 24 0.8842 V(N, N)
(3, -1) 0.2500 0.5000 0.2500 24 0.3011 V-V (3, -1) 0.4022 0.9025 0.4401 24 0.7187 V(N)-V(N, N)
(3, -1) 0.4440 0.0000 0.4495 96 0.8697 L-L (3, -1) 0.2155 0.5415 0.2721 24 0.0050 N2-N 2

(3, -1) 0.3402 0.3402 0.1520 96 0.6379 V-V (3, -1) 0.9734 0.5266 0.4734 8 0.1227 C-V
(3, -1) 0.4467 0.4467 0.0000 48 0.8696 L-L (3, -1) 0.4200 0.9200 0.5801 8 0.1334 C-V
(3, -1) 0.0000 0.0000 0.9723 24 0.1891 C-V (3, +1) 0.3507 0.3507 0.3507 8 0.0003 ring
(3, +1) 0.3281 0.3281 0.3232 32 0.0691 ring (3, +1) 0.1740 0.3713 0.2015 24 0.0007 ring
(3, +1) 0.4100 0.4100 0.8838 96 0.0486 ring (3, +1) 0.0081 0.4925 0.3435 24 0.6382 ring
(3, +1) 0.5000 0.0258 0.4900 96 0.1891 ring (3, +1) 0.0000 0.5000 0.5000 4 0.8664 ring
(3, +3) 0.2500 0.2500 0.2500 8 0.0391 cage (3, +1) 0.5301 0.4700 0.9075 24 0.0543 ring
(3, +3) 0.1729 0.5000 0.5000 24 0.0470 cage (3, +3) 0.2890 0.2890 0.2890 8 0.0002 cage
(3, +3) 0.5000 0.5000 0.5000 4 0.0004 cage (3, +3) 0.5000 0.5000 0.5000 4 0.0001 cage

(3, +3) 0.9275 0.5727 0.4900 24 0.0540 cage
(3, +3) 0.4901 0.9230 0.5669 24 0.0532 cage
(3, +3) 0.0771 0.0099 0.0667 24 0.0532 cage

Morse sum 0 0

a Positions (x, y, z), multiplicities (M), ELF value at the CP (η), and chemical meaning (CHM) are collected.

Figure 3. Schematic ELF profile of the various type of solids (see text): (a) diamond, (b) LiF, (c) Al, (d) N2.

Properties of the ELF Topology in Crystals J. Chem. Theory Comput., Vol. 5, No. 1, 2009 169



elements (from the 3rd and 4th rows downward). Taking
into account that the problems in these shells arise from their
spherical shape, the approximation (method III) of ∂η/∂ rbby
∂η/∂r becomes a reasonable approach to the correct answer,
as depicted in Figure 1 for the 1st K-shell of Br-.

All the program features and main operation routines are
schematized in Figure 2. First, the autocritic routine localizes
the critical points of the cell by means of the combined

core-valence algorithm. The characterization of the topology
induced by the ELF gradient is used for studying the
interactions in the solid. Then, the basin integration imple-
mented in integrals is coupled to the CP search (represented
by the arrow shape in the diagram) and makes use of all
three algorithms described above to provide charge and
volume values associated to the maxima found in the first
step. Finally, the construction of η and ∇ η grids with the
doplot routine enables the bonding pattern of the solid to be
visually analyzed.

IV. Performance

A. Critical Points. Lists of critical points for compounds
representative of ionic, covalent, metallic, and molecular
bonding are gathered in Tables 1 and 2. Multiplicities,
referred to in the tables as “M”, have to be taken into account
to check the Morse sum. The corresponding ELF pictures
and bifurcation trees are displayed in Figures 3 and 4. As
explained above, these trees have a dual purpose in the
analysis of the bonding: on the one hand, they highlight
chemical units, and on the other hand, they unveil the nature
of the interaction between them.

LiF in Table 1a is characterized by the absence of bond
basins, only showing core and valence closed-shell basins
(C(Li), C(F), and V(F)) whose shape approach that of a
sphere (see Figure 3), as can be shown from the small
variance in the critical point distance to the nucleus. It should
be noted that, contrary to some early ideas, clear quantifiable
ELF topological difference arises for the polarity of ionic
compounds. Among these compounds, polarity can be
viewed as an especial orientation of the valence toward the

Figure 4. Bifurcation tree for LiF, C, Al, and N2. The crystal data is as in Tables 1 and 2, respectively.

Figure 5. Convergence of ELF basin charges in the cristo-
balite phase of SiO2 for an n ) nr × nθ × nφ grid. The meaning
of the basin labels is illustrated in the upper left inset: K stands
for the 1st shell, L, for the 2nd, V(Si, O), for bond, and V(O),
for lone pair. Curves present the relative error, ε (%), in the
integration of charges (εq) and volumes (εv) according to both
methods of integration (labeled I and II). Inset in the right
bottom corner is an illustration of the complementary tetra-
hedral distribution of oxygens (black) and L-shell maxima
(yellow online).
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atoms with whom it is bonded. The difference between the
ELF values at the maxima and intrashell bip points gives an
idea of the delocalization between the basins of the valence:
48 ∆ηval ) η(3,-3)

val - η(3,-1)intra
val . Further information on the

calculation of ionic polarity can be found by another article
of the authors,48 where this index is applied in order to track
the subtle variation of ionicity along the B1 f B3 of BeO.
In Figure 4, the hierarchy of the basins for LiF is built from
these results. It can be seen that the first reduction corre-
sponds to cation-anion separation at a very low ELF value
(represented in the tables as Li-F) so that the crystal has
no common valence. The stabilization of the compound
comes therefore from electrostatic grounds. The high value
at which the F valence domains are split clearly shows that
they form one meaningful chemical unit, that is, the L-shell.

A covalent solid like diamond (Table 1 and Figure 3)
displays a continuous 3D-network of tetrahedrically coor-
dinated carbons, C(C), bound together by means of single-
bond basins, V(C, C). The first domain separation (Figure
4) gives rise to cores and a common valence, formed by the
bonds, at ELF ) 0.08 (C(C)-V(C, C)). The valence domain
is separated into irreductible bond basins at 0.59 (V(C,
C)-V(C, C)). It can be seen from Figure 3 that metallic Al
is formed of two shells (C(Al) and V(Al)). The quantitative
results in Table 2a show that the valence of the atom is spread
over the crystal, giving rise to low ELF maxima. Further-
more, the valence bips also show a value close to 0.5, so
that the resulting bifurcation tree reveals a nearly continuous
and planar valence (Figure 4) The observation of this
planarity in the valence ELF in many metals led Silvi and
Gatti to establish the characterization of metallic bond in
terms of the delocalization window: 6∆ηval ) η(3,-3)

val - η(3,-1)
val ,

yielding 0.043 for the Al. As far as N2 is concerned, the
value of ELF at the intermolecular points (named “N2-N2”
in Table 2) is crucial in order to study the relationship
between the molecular units. As reflected in Figure 4, the
van der Waals forces that stabilize the crystal give rise to a
first reduction into N2 molecular units at this very low
intermolecular ELF value, whereas the covalency within
molecules is revealed by the common valence they share
(formed by bonds, V(N, N), and lone pairs V(N)).

Overall, the relevance of the (3, -1) points and the
necessity of a reliable code for the localization of all the
valence critical points, cannot be overemphasized. Further-
more, the identification and characterization of the complete
set of critical points are of capital importance in the study
of chemical change by means of the catastrophe theory, a

field that up to now, and due to the lack of a computational
method, was restricted to the molecular realm.49,50

B. Basin Integration. The cristobalite phase of silica has
been chosen to exemplify the performance of the integrations.
It constitutes one of the simplest examples whereby all kinds
of ELF basins can be found.47 Cristobalite SiO2 presents three
maxima of ELF near the oxygen centers. One corresponds
to the lone pair basin with 4.8 electrons. The other two are
bonding basins sharing an average of 1.56 electrons with
each of the silicon centers to which O is coordinated (see
upper left inset in Figure 5). Silicon inner cores (with 2.3
electrons) are surrounded by the L-shell split in 4 maxima,
giving a total charge for the outer core of 7.8 electrons. These
maxima are located against the positions of the oxygens47

(see bottom right inset in Figure 5), corresponding to a
feature of the laplacian called ligand opposed core charge
concentrations (LOCCC).46 Hence, they reflect in an indirect
and subtle way the 4-fold coordination of Si in cristobalite.

The integration grid for each basin consisted from 5 to 40
points for the radial and angular integrations, respectively.
The logarithm of the total number of grid points is
represented on the x axis of Figure 5. A convergence to the
tenths of electrons and hundredths of volume atomic units,
which is enough for most common applications, is usually
found by a mixture of methods I and II (and III if heavy
elements are present) with a nr × nθ × nφ grid of 30 × 15
× 15 points. In spite of the modest amount of points, this
grid provides volumes that fill up the volume of the
cristobalite unit cell with errors around 0.8%. Greater
deviations are encountered in the charge due to core
integrations, where the high density value at the quadrature
points gives rise to bigger inaccuracies. Indeed, the conver-
gence obtained in the volume integration of SiO2 with both
methods is nearly the same, but it decreases when charge
density is integrated from 1.1% to 0.7% if both methods are
combined (see Figure 5). Deviations are also expected in
specially challenging cases where the low symmetry of the
cell or the split of multiple bonds demand greater grids. The
number of gradient evaluations is of the order of 105 for
each nonequivalent basin or group of basins, so any
additional simplification of the integration turns out to be
extremely valuable. In this sense, method number II for outer
core integrations not only gives rise to greater accuracy but
also provides great time saving by integrating all atomic
shells together and requiring smaller grids. Another way to
fasten the calculations is the use of cell symmetry: the

Table 3. Calculated Charges (qi) and Volumes (Vi) of ELF Basins in LiF (fcc, a ) 4.017 Å) C (diamond, a ) 3.56 Å), Al (fcc,
a ) 4.086 Å), and N2 (Pa3j, a ) 5.0 Å) for an nr × nθ × nφ grid of 30 × 15 × 15a

LiF C Al N2

basin qi Vi qi Vi qi Vi qi Vi

core(A) 2.03 14.02 2.08 0.79 10.01 9.89 2.08 0.45
core(B) 2.15 0.17
bond 1.98 20.39 3.50 26.48
lone pair 3.18 159.34
valence 7.81 98.57 2.99 111.64
ε -0.1% -1.3% +0.08% -2.3% -0.4% 0.3% +0.2% 0.9%

a Errors (ε) in percent are with respect to the total volume and number of electrons per formula unit. A and B stand for Li and F,
respectively.
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integration of basins occupying high symmetry Wyckoff
positions can be limited to the irreducible angular part.

In order to check the applicability of integrations to
different bonding patterns, the representative examples
presented in the previous section have been considered
following the hybrid procedure and using the selected 30 ×
15 × 15 grid. Results are compiled in Table 3. It can be
seen that the quantitative picture recovered by ELF in the
solid state is in agreement with chemical expectations. The
ionic nature of LiF is observed in its closed shell basins with
a charge transfer of 0.97 electrons. The Ne-like core with
10 electrons in aluminum is perfectly recovered, as well as
the metallic valence surrounding it, formed by unsaturated
basins of small charge. The high pressure molecular phase
of N2 keeps a strong N-N bond with a charge of 3.5
electrons and voluminous lone pairs that fill the space and
hold 3.18 electrons each. Lower population than that of a
formal triple bond is expected due to the pressure induced
charge flow from the bond basin to the lone pair and to the
presence of resonant structures.37 In the case of diamond,
perfect electron pairs are found, according to the perfect
covalency of the compound and the absence of resonant
forms. The last row of Table 3 reveals that the percent error
in the integrations stays below 0.5% in the charge and 2.5%
in the volume, confirming the ability of the new algorithm
to provide accurate charges and volumes for ELF basins in
a wide range of solids. We firmly believe that the hereby
proposed method will enable to extend the quantitative
topological ELF analysis of bonding to the solid state, where
the appearance of complex bonding structures claims for such
approaches.

V. Conclusions

An algorithm for the complete characterization of the
topology induced by ELF in solids, including identification
and characterization of all critical points and basin integra-
tion, is put forward. It is based on the fact that this topology
is characterized for having two regions with different
topological features: on the one hand, the valence, which
can be determined following previous crystalline topological
methods, and on the other hand, the core, whose sphericity
holds the key for designing new automated algorithms. The
robustness of the approach is proved across a wide range of
applications, where the relevancy of a thorough determination
of the local and global properties of the electron localization
function is well set. The next step toward a deeper under-
standing of bond in solids and its dynamical change involves
the calculation of probabilities51 and localization/delocal-
ization indexes,29,52 dependent on higher order density
matrices.
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Abstract: An effective Hamiltonian mixed molecular orbital and valence bond (EH-MOVB)
method is described to obtain accurate potential energy surfaces for chemical reactions. Building
upon previous results on the construction of diabatic and adiabatic potential surfaces using ab
initio MOVB theory, we introduce a diabatic-coupling scaling factor to uniformly scale the ab
initio off-diagonal matrix element H12 such that the computed energy of activation from the EH-
MOVB method is in agreement with the target value. The scaling factor is very close to unity,
resulting in minimal alteration of the potential energy surface of the original MOVB model.
Furthermore, the relative energy between the reactant and product diabatic states in the EH-
MOVB method can be improved to match the experimental energy of reaction. A key ingredient
in the EH-MOVB theory is that the off-diagonal matrix elements are functions of all degrees of
freedom of the system and the overlap matrix is explicitly evaluated. The EH-MOVB method
has been applied to the nucleophilic substitution reaction between hydrosulfide and chlo-
romethane to illustrate the methodology, and the results were matched to reproduce the results
from ab initio valence bond self-consistent-field (VBSCF) calculations. The diabatic coupling
(the off-diagonal matrix element in the generalized secular equation) has small variations along
the minimum energy reaction path in the EH-MOVB model, whereas it shows a maximum value
at the transition state and has nearly zero values in the regions of the ion-dipole complexes
from VBSCF calculations. The difference in the diabatic coupling stabilization is attributed to
the large overlap integral in the computationally efficient MOVB method.

1. Introduction

Previously, we described a mixed molecular orbital and
valence bond (MOVB) theory,1-3 in which effective diabatic
states are constructed by a block-localized wave function
(BLW) method at the ab initio level.4-11 In this approach,
molecular orbitals (MOs) are strictly localized within indi-
vidual fragments of a molecular system according to the

specific Lewis resonance structure of the reactant or product
state configuration. At the same time the block-localized MOs
are delocalized within each fragment, making the MOVB
method extremely efficient in comparison with ab initio
valence bond self-consistent-field (VBSCF) methods.12-16

In MOVB, the localized diabatic states are coupled to result
in an avoid-crossing at the transition state and the ground-
state adiabatic potential energy surface.1-3,17 Key features
of the MOVB theory include (1) that MOs within each
fragment are orthogonal, which makes computation efficient,
and (2) that MOs between different fragments are nonor-
thogonal, which retains important characteristics of valence
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bond (VB) theory. In the first limiting case in which there is
one fragment, MOVB reduces exactly to the Hartree-Fock
theory or Kohn-Sham density functional theory. In the
second limiting case in which MOs are localized on atoms,
the MOVB becomes an ab initio VBSCF model. The MOVB
method can be regarded as the simplest ab initio VB variant,
and its computational accuracy depends on the basis func-
tions used and the coupling between diabatic states in a
specific reaction. The aim of this paper is to develop an
effective Hamiltonian strategy to yield accurate results on
the computed reaction barrier. We make use of the second-
order nucleophilic substitution (SN2) reaction between HS-

and CH3Cl in the gas phase to illustrate this approach.

The most widely used empirical model in computer
simulations is the empirical valence bond (EVB) approach
introduced by Warshel and Weiss,18 in which the reactant
and product diabatic states are represented by molecular
mechanics force field. For chemical reactions, a modified
Morse potential is used to describe the potential energy
profile for a given bond dissociation process.19 Although
multiple state configurations can be constructed, a two-state
model is typically employed, representing the reactant and
the product diabatic state, respectively. A key assumption
of the EVB model is that the diabatic states are treated as
orthogonal states, thereby, resulting in a simple secular
equation independent of the overlap integral between the
reactant and product wave functions.18,19c This is necessary
because in such an implicit model wave functions are not
available. The impact of this assumption can be relieved by
adjusting the off-diagonal matrix element, H12, which is
approximated by an exponential function or simply by a
constant value, adjusted to yield the desired barrier height.
Consequently, the EVB potential constructed this way can
reproduce the experimental activation barrier exactly.

Recently, Hong et al.20a described an interesting frozen
density functional theory (FDFT) model in which the total
electron density of a system is separated into fragmental
densities, similar to the MOVB approach in the definition
of the wave functions for the diabatic states.1 Hong et al.
defined the diabatic coupling by back calculation of the
delocalized ground-state energy Eg, assuming that the overlap
between the two states is zero; H12 ) [(Eg-H11)(Eg-H22)]1/2.
The FDFT method has been applied to an SN2 reaction and
a proton transfer process in water.20 In this approach, the
density of a diabatic state is determined at a given config-
uration and kept frozen throughout the entire reaction
profile.20 The frozen densities are considered to be an
arbitrary mathematical definition without any relationship.20b

Nevertheless, one notices that the adiabatic ground-state
energy Eg can become higher than that of the reactant diabatic
state in the FDFT model (see Figure 1 of ref 20a), which
would result in an imaginary value for the diabatic coupling
H12. Thus, it appears to be necessary to impose certain
requirements, including an approximate but explicit consid-
eration of the overlap,21 when densities are separated or kept
frozen. It seems that ab initio molecular orbital and valence
bond methods described here have a unique advantage that
the diabatic states are well-defined with specific physical

properties that can be related to the traditional concepts of
chemical bonding.3,12,17

It has been noted that the use of a constant value or a
simple exponential function of one or few degrees of freedom
for the off-diagonal matrix element is not flexible enough
to fit both structure and vibrational frequencies at the
transition state.22 To overcome this difficulty, which could
be important for studying reaction dynamics including
computation of kinetic isotope effects, a variety of algorithms
have been proposed. Chang and Miller used a generalized
Gaussian function to model the resonance integral by fitting
the structure and vibrational frequencies at the transition
state.23 This approach has been extended to a multistate
empirical valence bond (MS-EVB) model for modeling
proton transfer reactions.24-26 Recently, Schlegel and co-
workers further improved the Chang-Miller model by
introducing a product of Gaussian and polynomial func-
tions,22,27 which is aided by a remarkably efficient fitting
procedure. The latter method was demonstrated to yield
chemically accurate potential energy surfaces for a number
of reactions. In yet another optimization approach, Truhlar
and co-workers employed an interpolation scheme to repro-
duce the energy, gradient, and Hessian from ab initio
methods.28-30

Of course, ab initio valence bond (VB) theory can be
directly used to construct diabatic and adiabatic states;12-16,31

however, there is no straightforward formulism to derive a
simple two state model,3,32-36 representing the reactant and
product diabatic states that are often used in force-field
calculations. In addition, these calculations are too expensive
for application to large molecules and chemical reactions in
solution. Recently, we describe an approach for deriving a
two-state model3 by constructing the two diabatic states from
ab initio multiconfigurational valence bond (VBSCF)
theory,16,37,38 and this theoretical model was used to compare
results obtained from the MOVB theory.3 We showed that
the effective diabatic states can be optimized by two
complementary variational approaches, resulting in two
limiting scenarios. In the first case, the diabatic states are
constructed by optimizing the wave function of each diabatic
state to yield the minimum diabatic energy; we call these
states the variational diabatic configurations (VDC).1-3 It
appears that one of the requirements for computing H12 in
ref 21a (see eq 4 of that paper) is to obtain such states,
although that approach was described in a constrained DFT
model.21a Alternatively, the diabatic states can be obtained
as a result of the variational optimization of the valence bond
wave function of the adiabatic ground state. We call these
diabatic states the consistent diabatic configurations (CDC).3

Comparison between the MOVB results with those obtained
using ab initio VBSCF theory for a model SN2 reaction
between ammonia and methylammonium ion shows that the
two methods are in excellent accord in describing both the
VDC and CDC diabatic states. However, the barrier heights
for chemical reactions from MOVB calculations are typically
a few kilocalories per mole higher than high-level ab initio
results that include dynamic correlation.

In this paper, we show that the MOVB method can be
constructed to yield the barrier height for a chemical reaction
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in exact agreement with experimental or high-level ab initio
results. This can be accomplished by introducing a scaling
factor to the exchange integral between the two diabatic
states, which has minimal effects on the shape of the overall
potential energy surface. We call this method the effective
Hamiltonian MOVB (EH-MOVB) model. Note that the
principles of constructing effective Hamiltonian valence bond
theory have been used in numerous other contexts.22-30,39-45

In the following, we first present the theory to systematically
reduce ab initio valence bond configurations into a two
effective state model. Then, the mixed molecular orbital and
valence bond (MOVB) theory is reviewed, followed by a
summary of computation. Results and discussions are
presented next. Finally, the paper concludes with a summary
of the major findings of this study and future perspectives.

2. Method

In this section, we first describe ab initio valence bond self-
consistent-field (VBSCF) method employed in the present
study as the high-level calibration target, although any other
methods can be used. Then, we summarize key features of
the mixed molecular orbital and valence bond (MOVB)
theory for constructing diabatic and adiabatic potential
surfaces and the effective Hamiltonian approach for obtaining
accurate barrier height and energy of reaction for a chemical
reaction.

A. Self-Consistent-Field Valence Bond (VBSCF)
Theory. For the SN2 reaction between HS- and H3CCl, we
consider the VB active space formed by four electrons, two
from the nucleophile and two from the covalent bond
between the central carbon and the leaving group chloride
ion, and 3 hybridized (or polarized) atomic orbitals located
on the sulfur, the central carbon, and the leaving group,
respectively. Thus, a total of six VB structures can be written
(Scheme 1) to form the VB wave function of the diabatic
ground state. Specifically, states 1 and 2 are the covalent
Heitler-London structures for the reactant and product states,
respectively, each of which is represented by two Slater
determinants.46 Furthermore, each Lewis bond, the C-Cl
bond in the reactant state and the S-C bond in the product
state, consists of two ionic configurations, corresponding to
the electron pair localized on a single atom; they are
described by structures 3 and 4 and structures 3 and 5,
respectively. Finally, configuration 6 represents the spin
pairing interactions between an electron localized on the

Figure 1. Computed adiabatic ground-state potential energy
surface for nucleophilic substitution reaction of HS- + CH3Cl
f HSCH3 + Cl- determined using (A) HF/6-31G(d), (B)
VBSCF(6)/6-31G(d), and (C) CDC-MOVB(2)/6-31G(d) meth-
ods. The 6-31G(d) basis set is used throughout, which will
be omitted in other figures. The reaction coordinate R1

represents the distance between the central carbon and the
chlorine atom, and R2 specifies the distance between the
sulfur atom and the central carbon atom. Energies are given
in kcal/mol and distances are given in angstroms. The
energy of the fully separated product is chosen as the
reference (zero) energy. This convention is used throughout
this paper.

Scheme 1. Schematic Representation of the Valence Bond
Structures for the SN2 Reaction between HS- and CH3Cl
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nucleophilic group and one electron on the leaving group
with the substrate central carbon orbital doubly occupied.

The VB wave function Φ for the SN2 reaction between
hydrosulfide ion and chloromethane is written as a linear
combination of the six configurations depicted in Scheme
1:13,14,47

Φ) ∑
K)1

6

aKΨK (1)

where ΨK is a Heilter-Lonton-Slater-Pauling (HLSP) func-
tion, and aK is the coefficient for state K. In the VBSCF
theory,16,37,38 both the state coefficients {aK} in eq 1 and
orbital coefficients of each VB structure {ΨK} are simulta-
neously optimized to yield the minimum energy of the
system. In this calculation, the VB atomic orbitals are the
same in all configurations. The accuracy of VBSCF results
is similar to that of the complete active space self-consistent
field (CASSCF) method,48 and these calculations include
partial static electron correlation effects for electrons in the
active space. Dynamic correlation effects can be introduced
in VB calculations by relaxing the restriction on VB orbitals
to allow them “breath” in different VB configurations.14,49-51

B. Mixed Molecular Orbital and Valence Bond
(MOVB) Theory. In the mixed molecular orbital and valence
bond (MOVB) method,1-3,52,53 we use one Slater determi-
nant with block-localized molecular orbitals to define
individual VB configuration or Lewis resonance structure,
called a diabatic state.4-11 The Slater determinant can be
self-consistently derived at both the Hartree-Fock and DFT
levels. For example, the reactant state of the SN2 reaction
between HS- and CH3Cl is defined as the Lewis bond
structure of the substrate {CH3Cl} in the presence of the
“spectator” nucleophilic ion {HS-}

{HS-}{CH3Cl};ΨMOVB
R ) Â{�HS

R �CH3Cl
R } (2)

where ΨMOVB
R is the MOVB wave function for the reactant

diabatic state, Â is an antisymmetrizing operator, and �HS
R

and �CH3Cl
R are direct products of molecular orbitals for the

fragments {HS-} and {CH3Cl}, respectively, constructed
under the restriction that they are linear combinations of
atomic orbitals located within the corresponding fragment.
Furthermore, the MOs within each fragment are constrained
to be orthogonal, but they are nonorthogonal between
different fragments. These features are illustrated by the
transformation matrix

CR ) (CHS
R 0

0 CCH3Cl
R ) (3)

where CHS
R and CCH3Cl

R are matrices of orbital coefficients of
the occupied molecular orbitals for the two fragments.2 Note
that the total number of electrons within each fragment is
also fixed according to the corresponding Lewis structure
and there is no chemical bond between the two fragments
in the present case.

Similarly, the product state is defined as the Lewis bond
structure of the product {HSCH3} in the presence of the
“spectator” ion of the leaving group {Cl-}

{HSCH3}{Cl-};ΨMOVB
P ) Â{�HSCH3

P �Cl
P } (4)

where ΨMOVB
P is the MOVB wave function for the product

diabatic state, and �HSCH3
P and �Cl

P are direct products of
molecular orbitals for the {HSCH3} and {Cl-} fragments,
respectively.

The MOVB wave function for the adiabatic ground-state
is written as a linear combination of the diabatic states

ΦMOVB ) aRΨMOVB
R + aPΨMOVB

P (5)

where aR and aP are the configurational coefficients for the
reactant and product diabatic state, respectively.4,5 The
potential energy of the adiabatic ground-state is the lower
energy root of the secular equation

| H11
R -V H12 - S12V

H12 - S12V H22
P -V |) 0 (6)

where V is the adiabatic potential energy, H11
R and H22

P are
the Hamiltonian matrix elements for the reactant and product
diabatic states, respectively, H12 is the exchange integral, and
S12

R ) <ΨMOVB
R |ΨMOVB

P > is the overlap integral between the
two effective states.

The reactant and product diabatic states ΨMOVB
R and ΨMOVB

P

can be individually optimized, giving rise to the variational
diabatic configurations (VDC),1-3,52,53 and they can be used
as basis functions to obtain the VDC-MOVB adiabatic
ground-state energy with the optimization of the configura-
tional coefficients aR and aP only. However, such a config-
uration interaction approach in the VDC-MOVB model is
not a variational method. The VDC diabatic states are useful
for a variety of applications; if one is interested in electronic
resonance effects such as hyperconjugation stabilization of
carbocations, the aromaticity of benzene and derivatives, or
charge transfer effects in cation-π interactions, the VDC
energies are variational for the charge localized diabatic
configurations, which can be used to compare with the charge
delocalized adiabatic state.1,2,6,9,10,54-59

When the wave function of eq 5 is variationally optimized
both in terms of the configurational coefficients aR and aP

and in terms of the molecular orbital coefficients (eq 3) to
yield the minimum energy of the adiabatic ground state, the
resulting MOVB diabatic states are called the consistent
diabatic configurations (CDC).3 The CDC-MOVB compu-
tational procedure is similar to that used in conventional
multiconfiguration self-consistent field (MCSCF) method or
ab initio VBSCF method, and the gradients of the adiabatic
potential energy can be conveniently determined for use in
geometry optimization and in molecular dynamics simulation.
We note that the CDC-MOVB method is the appropriate
computational approach for studying properties associated
with the adiabatic ground-state such as the reaction barrier
for a chemical reaction and the solvent reorganization energy.
In this paper, we restrict out discussions on the CDC-MOVB
method for the adiabatic ground state.

For comparison, each of the corresponding MOVB diabatic
states ΨMOVB

R and ΨMOVB
P is represented by a single Slater

determinant, whereas in ab initio VBSCF theory each state
is described by three Heitler-London structures and four
Slater determinants (Scheme 1). This emphasizes the com-
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putational efficiency of MOVB. In addition, the MOVB
adiabatic ground-state defined by eq 5 does not include VB
state 6 in Scheme 1, and it has been shown that exclusion
of this state does not affect the energy of the adiabatic
ground-state significantly in ab initio VBSCF calcualtions.3

C. Effective Hamiltonian MOVB. The MOVB method
has bee used to study a number of nucleophilic substitution
reactions and proton transfer processes both in the gas phase
and in aqueous solution.1-3,52-54 While the overall MOVB
results on diabatic states and the adiabatic ground-state are
in good agreement with those obtained from ab initio VBSCF
calculations, the computed barrier heights from MOVB are
typically a few kilocaleries per mole greater than high-level
ab initio results that include electron correlations. For
example, the computed barriers for the reaction of HS- and
CH3Cl are 9.7, 9.9, 8.0, and 9.6 kcal/mol at the HF, MP2,
CCSD(T), and VBSCF levels of theory using the 6-31G(d)
basis set (density functional theory using the B3LYP model
produces an unrealistically low barrier of 1.5 kcal/mol), but
the CDC-MOVB model yields an energy barrier of 15.3 kcal/
mol (Table 1). To overcome this small nagging problem in
MOVB, but at the same time to retain the shape of the
potential energy surface which is in accord with high-level
results (Figure 1), we introduce a scaling parameter to adjust
the off-diagonal Hamiltonian matrix element H12

H12
EH ) �H12 (7)

where H12
EH is the effective Hamiltonian (EH) off-diagonal

matrix element, and � is the diabatic coupling scaling
constant to account for static correlations that are not fully
accounted for in MOVB states and dynamic correlations that
are not included as well as the use of a specific basis set. In
such an EH-MOVB model, we retain the good qualitative
and quantitative results for the diabatic states, i.e., the
diagonal matrix elements H11

R and H22
P , in the MOVB model.

We also retain the qualitative features of the off-diagonal
matrix element H12, but we choose a � value to reproduce
exactly the barrier height of the target potential, derived either
from experiment or from high-level ab initio calculations.
In principle, the approach is similar to that used in effective
Hamiltonian valence bond methods to parameterically model
the ab initio matrix elements to reproduce the exact high-
level results.22-30,39-45

In addition, if the energy of reaction, which is the energy
difference between the product state and the reactant state

from the MOVB model, is not in good agreement with
experiment, we can also adjust the EH-MOVB result to
match the experimental value. Here, we employ a strategy
that was used in the EVB model by Warshel and co-workers
by introducing a shift-parameter in the diagonal matrix
element H22

P . Let ∆Eexp be the experimental energy of reaction
and ∆EMOVB be the energy of reaction determined from the
original MOVB method, which is roughly the difference
between the energies of the two diabatic state, ∆EMOVB ≈
H22

P (RP) - H11
R (RR), at their respective geometries RR and

RP. Then, in EH-MOVB, the product state matrix element
is adjusted by an energy shift-parameter ∆ε as follows:

H22
EH )H22

P +∆ε)H22
P + (∆Eexp -∆EMOVB) (8)

In the EH-MOVB model, the energy of the adiabatic
ground-state is determined by using the modified secular
equation

| H11
R -V �H12 - S12V

�H12 - S12V H22
P +∆ε-V |) 0 (9)

In eq 9, with the introduction of two parameters, the EH-
MOVB method can be adjusted to reproduce exactly the
experimental energy of activation and energy of reaction.
We note that this parameter calibration approach has been
used by Warshel and co-workers.18-21 The difference here
is that the diabatic coupling scaling parameter uniformly
modifies the entire multidimensional surface rather than a
simple constant or a single-variable function.19 The value
of the diabatic coupling scaling parameter is found to be in
the order of 1.0005 for many reactions, and the value for
the present SN2 process is 1.00064; the value close to unity
is a further indication that the shape of the potential energy
surface is minimally affected, while the barrier height is
reduced by about 6 kcal/mol.

3. Computational Details

All calculations are carried out using a modified version of
the Xiamen Valence Bond (XMVB)16 program and Gauss-
ian03.60 The 6-31G(d) basis set is used throughout all
calculations. Geometries for the SN2 reaction between HS-

and CH3Cl along the reaction coordinate defined below are
optimized using the 6-31G(d) basis set at each level of
theory. In VBSCF and BOVB calculations, the inner
electrons are frozen at the Hartree-Fock level, and 22
valence electrons are treated in VB calculations.61

Table 1. Computed Binding Energies (kcal/mol) for the
Formation of the Ion-Dipole (∆E1) Complex, the Barrier
Height Relative to the IP Complex (∆E+), the Relative
Energy between the Reactant and Product Ion-Dipole
Complexes (∆E2), and the Net Energy of Reaction (∆Erxn)
between the Product and Reactant States for the SN2
Reaction between Hydrosulfide and Chloromethane

HF B3LYP MP2
CCSD

(T)
VBSCF

(6)a
MOVB

(2)a
EH-MOVB

(2)a

∆E1 –9.3 –11.2 –9.9 –9.9 –9.9 –8.8 –10.7
∆E+ 9.7 1.5 9.9 8.0 9.6 15.3 9.6
∆E2 –21.8 –18.7 –21.9 –21.5 –21.1 –22.0 –20.9
∆Erxn –24.9 –22.3 –24.8 –24.5 –25.0 –25.0 –24.3

a The value in parentheses is the number of structures used in
the calculation.

Scheme 2. Definition and Relative Energies
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To describe the change in energy and wave function of
the two Lewis bond states as the reaction takes place, we
define the reaction coordinate here as the difference between
the bond length of the central carbon and the leaving group
R(C-Cl) and that of the nucleophile and the central carbon
R(S-C):

Rc )R1(C-Cl)-R2(S-C) (10)

Of course, one can use other definitions to monitor the
progress of the reaction, including the difference between
the corresponding bond orders or energies of the two Lewis
bond states. The geometrical variable, corresponding to the
asymmetric bond stretch coordinate, is a good choice and
of chemical intuition.

4. Results and Discussion

The main goal of this study is to develop an effective
Hamiltonian approach so that quantitatively accurate results
can be obtained from MOVB calculations using a two-state
model with a modest basis set. We aim not only to obtain
accurate results for the reaction barrier and the overall energy
of reaction in comparison with high-level ab initio results
but also to ensure that the structure and the potential energy
surface are adequately represented. First, we compare the
adiabatic potential energy surface from ab initio VBSCF
theory with that from MOVB calculations as a function of
the bond lengths that are broken and formed in the SN2
reaction of hydrosulfide and chloromethane. Then, we discuss
the qualitative features and quantitative results for the
individual diabatic configurations and the diabatic coupling
integral.

A. Adiabatic Potential Energy Surface. Figure 1 il-
lustrates the two-dimensional potential energy surfaces as
functions of the S-C bond length between the nucleophile
and the central carbon and the C-Cl distance between the
central carbon and the leaving group, which are constructed
by using three different levels of theory, including HF,
VBSCF(6), and MOVB(2) methods, all with the 6-31G(d)
basis set. The number in parentheses specifies the number
of VB configurations used in the corresponding theory. In
addition, the relative energies at key stationary points are
summarized in Table 1 with definitions of the energy terms
depicted in Scheme 2. The computational methods include
the Moller-Plesset second order perturbation (MP2) theory,
coupled cluster at the CCSD(T) level, and the hybrid B3LYP
density function model. Overall, the results from all theoreti-
cal levels are in agreement, except for the B3LYP model
which yields a surprisingly low barrier. The computed barrier
heights (∆E+) at the transition state relative to the reactant
ion-dipole complex are 9.7, 9.9, 8.0, and 9.6 kcal/mol at the
HF, MP2, CCSD(T), and VBSCF(6) level of theory,
respectively, and the energy differences between the two ion-
dipole complexes (∆E2) are -21.8, -21.9, -21.5, and -21.1
kcal/mol, respectively. The computed overall energies of
reaction for the separated reactants and products are in good
accord among these theoretical models. For comparison, the
original CDC-MOVB(2) method yields a reaction barrier of
15.3 kcal/mol, an energy difference between the dipole
complex of -22.0 kcal/mol, and an energy of reaction (∆Erxn)

of -5.9 kcal/mol. Thus, the overall performance of the
MOVB(2) method is good in comparison with VBSCF
results; however, the reaction barrier is overestimated by 5.7
kcal/mol relative to that of VBSCF(6) calculations. Com-
parison of the energy contours in Figure 1 shows that the
qualitative features of the two-state MOVB(2) model are also
in good accord with those obtained from HF and VBSCF(6)
optimizations. This suggests that the original MOVB(2)
model only needs to be slightly adjusted by lowering the
barrier height by 5.7 kcal/mol but, at the same time, retaining
the general qualitative features of the potential energy
surface. This can be achieved within the effective Hamilto-
nian framework, and we have optimized the diabatic-coupling
scaling parameter � in the EH-MOVB model to yield the
result from ab initio VBSCF(6) theory. Since the relative
energies between the ion-dipole complexes and the separated
reactants and products are already in good accord with the
VBSCF(6) values, we have decided to use an energy leveling
correction of zero for the present system. The parameters in
the EH-MOVB model are listed in Table 2, and the final
EH-MOVB(2) results are given in Table 1. As can be seen,
the exchange integral is only scaled by a factor of 0.06% of
the original values.

The EH-MOVB potential energy surface for the reaction
of HS- and CH3Cl is depicted in Figure 2, which may be
compared with the ab initio valence bond results in Figure
1b. The original MOVB surface shows somewhat narrower
contours about the minima for the two ion-dipole complexes
than the VBSCF results. On the other hand, the energy
contours determined using the EH-MOVB method are found

Table 2. Diabatic Coupling Scaling Parameter and the
Relative Energy Shift for the Diabatic State Used in the
EH-MOVB(2)/6-31+G(d,p) Method for the SN2 Reaction
between Hydrosulfide and Chloromethanea

� (unitless) ∆ε (kcal/mol)

1.00064 0.0

a Energies are given in kcal/mol.

Figure 2. Adiabatic ground-state potential energy surface
computed using the EH-MOVB model for the reaction of HS-

+ CH3Cl f HSCH3 + Cl-.
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to be in good accord with the VBSCF(6) results (Figure 1b).
Key geometrical parameters for the optimized transition state
using different methods are shown in Figure 3. Specifically
the S-C and C-Cl distances are 2.05 and 2.48 Å from
VBSCF(6) theory and are 2.89 and 2.27 Å from EH-
MOVB(2) optimizations. While VBSCF and EH-MOVB
show large difference in the S–C bond length, the agreement
between HF and EH-MOVB is reasonable. The bond angles
for the hydrogen atoms that are inverted in configuration
show similar trends among these three methods (Figure 3).

The energy contours for the reactant and product diabatic
states are shown in Figures 4 and 5. Clearly, the shapes of
these potential energy surfaces are in good agreement
between the EH-MOVB and VBSCF models, although the
energy contours for product diabatic state from VBSCF(6)
calculations appear to be somewhat more tightly grouped.
It is interesting to notice that the minimum energy paths
along the coordinate of the nucleophile approaching the
substrate from the upper left corner in Figures 4a and 5a
mirror nicely with that of the adiabatic potential energy
surface, but it deviates markedly beyond the transition state
region. Of course, the energy path on the product side is
more appropriately described by the product diabatic state,
and it is illustrated in Figures 4b and 5b. The diabatic states
are coupled, and the resulting resonance stabilization energy,
also called diabatic coupling, to lower the energy of the
diabatic states to yield the adiabatic potential energy surface
can be defined by

B(R))H12
EH(R)- S12(R)V(R) (11)

where R specifies the coordinates of all atoms in the system,
V(R) is the potential energy surface of the adiabatic ground
state, H12

EH(R) is the effective Hamiltonian off-diagonal matrix
element, and S12(R) is the overlap matrix.

Shown in Figure 6 are the contour maps for the diabatic
coupling both from the VBSCF(6) and the EH-MOVB(2)
method. Inspecting the two diabatic coupling maps, one
immediately notices that they are qualitatively different
despite the fact that the potential surfaces for the adiabatic
states are very similar (Figures 1b and 2). In the EH-
MOVB(2) model, the energy contours for the diabatic
coupling follow roughly in the direction parallel to the

minimum energy path (MEP) of the adiabatic potential
energy surface (Figure 2), whereas, in VBSCF theory, the
isoenergy contour curves trace nearly perpendicularly to the
MEP path. Thus, the diabatic coupling in the EH-MOVB

Figure 3. Key geometrical parameters for the reactant-state ion-dipole complex, the transition state, and the product ion-dipole
complex optimized at the HF, EH-MOVB, and VBSCF levels of theory.

Figure 4. EH-MOVB consistent diabatic configurations for
the reactant (a) and product (b) state. Energies are given in
kcal/mol.
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model has rather small variations along the MEP path
coordinate, but the VBSCF diabatic coupling has a maximum
at the transition state and is nearly zero at the reactant and
product state (Figure 7). The difference is due to the relatively
large contributions from the same ionic configuration (State
3 in Scheme 1) both in the reactant and product diabatic
states in the MOVB method, resulting in greater overlap
between the two states along the entire reaction coordinate.
Consequently, the diabatic coupling (eq 10) shows small
changes. On the other hand the overlap integral shows greater
variation with geometry changes in VBSCF theory, and this
dependence can be modeled by an exponential function along
the MEP coordinate. Obviously, this exponential dependence
is different away from the MEP, and the diabatic coupling
is in general a function of all atomic coordinates (eq 10),
rather than a single reaction coordinate. Interestingly, both
a constant value and an exponential function have been used
to mimic the diabatic coupling in applications of the EVB
model.18,19

B. Variational Diabatic States. The diabatic potential
energy surfaces for the reactant and product states can be
obtained in two different ways.3 When the diabatic states
are generated as a result of variational minimization of the
energy of the adiabatic ground state, they are consistent
diabatic configurations (CDC).3 Alternatively, the energy of
each individual diabatic state can be variationally minimized,
and such variational diabatic configurations (VDC) represent
the potential energy surfaces of the diabatic states (ε1 ) H11,
ε2 ) H22),

1-3 which should be distinguished from the
diagonal matrix elements (H11, H22) from the CDC states.
This distinction is important because if one uses molecular
fragments as models to parametrize the potential energy
functions for the diabatic states, they correspond to the
minimum energy of these states, ε1, and ε2, and thus, they
are the VDC states.3

Previously, we have shown that for the SN2 reaction
between ammonia and methylammonium ion in the gas
phase, the CDC states remain roughly on the covalent
potential energy surface as the molecular geometry distorts

Figure 5. VBSCF consistent diabatic configurations for the
reactant (a) and product (b) state. Energies are given in kcal/
mol.

Figure 6. Computed resonance energy also called diabatic
coupling (kcal/mol) for the SN2 reaction of hydrosulfide and
chloromethane using (a) the CDC-MOVB method and (b) the
CDC-VBSCF approach.
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away from the respective reactant and product state mini-
mum.3 On the other hand, the VDC states converge largely
to the corresponding ionic configurations, which have much
lower energies than the covalent states, by the same
geometrical variations. These findings are clearly reflected
by comparing the CDC diabatic states shown in Figures 4
and 5 with the VDC states shown in Figures 8 and 9. At the
VBSCF(6) level of theory, the CDC potential surfaces
(Figure 4) have energy variations of more than 200 kcal/
mol both for the reactant and product states as the two
chemical bonds formed and broken, respectively. On the
other hand, the VDC potentials surfaces have smaller energy
changes, about 130 kcal/mol within the same structural
variations (Figure 8). Similar trends are observed for the EH-
MOVB(2) model in Figures 5 and 9, although a small subtle
difference between VBSCF(6) and EH-MOVB(2) can be
noticed in the CDC states in that the former model seems to
generate slightly less steep potential surfaces than the latter.
The agreement between the VDC surfaces obtained from the
VBSCF(6) and EH-MOVB(2) methods is very good.

We emphasize that there is no unique way of defining the
diabatic states in a two-state model to represent an intrinsi-
cally multiconfigurational wave function for the reaction
system and that we have presented two approaches here to
optimize the wave functions of these diabatic states. Thus,
it is important to specify the way in which the diabatic states
are defined and the procedure by which their wave functions
are optimized to interpret the properties and reactivity of a

chemical system. In addition, the nature of the diabatic states
in their covalent and ionic characters will also be altered by
solvation. This will significantly affect the quantitative values
and the interpretation of solvent reorganization energies since
the computational results depend on the charge polarization
of the diabatic states. Clearly, a rigorous assessment of the
definition of the diabatic states and the method used to
estimate the solvent reorganization energy is as critical as
the quantitative result itself.

We also note that it is sometimes informative to use a
generalized solvent reaction coordinate such as the energy
gap between the reactant and product diabatic states,1,2,19,20

∆E ) ε2(R) - ε1(R). Since the energies of the diabatic states
include both the internal energy change as well as the
interactions with the solvent and protein media, the change
in this energy difference reflects both the progress of the
geometries of the reacting molecules and the polarization of
the environment. This approach which was originally used
in the Marcus theory for electron transfer reactions has been

Figure 7. Computed resonance energy (kcal/mol), also called
diabatic coupling, along the minimum energy path expressed
by the difference between the distance between the breaking
and forming bonds, i.e., Rc ) R1 - R2, which is given in
angstroms: (a) determined using the CDC-MOVB method and
(b) computed using the CDC-VBSCF model.

Figure 8. MOVB variational diabatic configurations (VDC) for
(a) the reactant state and (b) the product state for the SN2
reaction between hydrosulfide ion and chloromethane in the
gas phase. Relative energies are given in kcal/mol.

182 J. Chem. Theory Comput., Vol. 5, No. 1, 2009 Song et al.



broadly applied, due to Warshel’s work, to other chemical
reactions in solution and in enzymes.1,2,19,20,52 In principle,
the energy gap reaction coordinate can also be defined either
by using the CDC states or by using the VDC states. It is
straightforward computationally to employ the VDC energy
gap,1,2,19,20 ∆EVDC ) ε2(R) - ε1(R), as the potential energy
function to directly carry out molecular dynamics simulations
to obtain the potential of mean force as a function of ∆EVDC

for a chemical reaction.52 It is also desirable conceptually
to use this representation since the VDC states represent the
true energies of the diabatic states.

5. Conclusions

An effective Hamiltonian-mixed molecular orbital and
valence bond (EH-MOVB) method has been presented to
obtain an accurate potential energy surface for chemical
reactions. Building upon previous results on the construction
of diabatic and adiabatic potential surfaces using ab initio

MOVB theory,3 we introduced a diabatic coupling scaling
factor to uniformly scale the ab initio off-diagonal matrix
element H12 such that the computed energy of activation from
the EH-MOVB method is adjusted to be in exact agreement
with the target value, either directly from experiment or from
high-level ab initio calculations. In practice, the scaling
constant is only a fraction of one percent of the original value
of the off-diagonal matrix element, resulting in minimal
alteration of the shape of the potential energy surface of the
original MOVB model. Furthermore, the relative energy
between the reactant and product diabatic states in the EH-
MOVB method can be improved by adding a constant value,
which is the deviation from the experimental result, to the
potential energy surface of the diagonal matrix element. This
approach is similar to the calibration procedure used by
Warshel and co-workers in the empirical valence bond (EVB)
model,19 but the present EH-MOVB method is based on ab
initio electronic structure theory in which the off-diagonal
matrix elements are functions of all degrees of freedom of
the system and the overlap matrix is explicitly evaluated.

We have chosen the nucleophilic substitution reaction
between hydrosulfide and chloromethane to illustrate the
present effective Hamiltonian approach. We used the results
from ab initio self-consistent valence bond (VBSCF) cal-
culations as the calibration target, noting that any other high-
level methods or experimental data can be used. For the
construction of diabatic states, two optimization schemes are
considered. In the first approach, called consistent diabatic
configurations (CDC), the wave functions for the diabatic
states are obtained as a result of the variational minimization
of the adiabatic ground state. In the second model, called
variational diabatic configurations (VDC), the wave functions
of these states are individually minimized to obtain the
energy of the diabatic states. The potential energy sur-
face for the adiabatic ground-state has been constructed using
the CDC states in the two-state EH-MOVB model, and the
resulting energy contours as functions of the breaking and
forming bond distances are in excellent accord with those
from VBSCF calculations. It was found that the stabilization
energy due to diabatic coupling (the off-diagonal matrix
element in the generalized secular equation) has small
variations along the minimum reaction path coordinate in
the EH-MOVB model, whereas it shows a maximum value
at the transition state and has nearly zero values in the regions
of the ion-dipole complexes from VBSCF calculations. The
difference in the diabatic coupling stabilization between the
two method is attributed to the large overlap integral in the
computationally efficient MOVB method, which has larger
contributions from the ionic state due to the use block-
localized orbitals in a single determinant representation,
whereas in VBSCF the overlap integral is more geometrical
dependent. We have also discussed the distinction between
VDC and CDC diabatic states, with the former representing
the potential energy surface of the diabatic states and the
latter specifies purely the diagonal matrix elements of the
Hamiltonian. These differences make it necessary to clearly
define the diabatic states and validate the energies in
discussion of reactivity and reorganization energies.

Figure 9. VBSCF variational diabatic configurations (VDC)
for (a) the reactant state and (b) the product state for the SN2
reaction between hydrosulfide ion and chloromethane in the
gas phase. Relative energies are given in kcal/mol.

Hamiltonian (MOVB) Approach for Chemical Reactions J. Chem. Theory Comput., Vol. 5, No. 1, 2009 183



Acknowledgment. We thank the National Institutes of
Health (GM46736) and the Office of Naval Research for
support of this work.

References

(1) Mo, Y.; Gao, J. J. Comput. Chem. 2000, 21, 1458.

(2) Mo, Y.; Gao, J. J. Phys. Chem. A 2000, 104, 3012.

(3) Song, L.; Gao, J. J. Phys. Chem. A 2008, ASAP.

(4) Mo, Y.; Peyerimhoff, S. D. J. Chem. Phys. 1998, 109, 1687.

(5) Mo, Y.; Zhang, Y.; Gao, J. J. Am. Chem. Soc. 1999, 121,
5737.

(6) Mo, Y.; Gao, J.; Peyerimhoff, S. D. J. Chem. Phys. 2000,
112, 5530.

(7) (a) Gianinetti, E.; Raimondi, M.; Tornaghi, E. Int. J. Quantum
Chem. 1996, 60, 157. (b) Gianinetti, E.; Vandoni, I.; Famulari,
A.; Raimondi, M. AdV. Quantum Chem. 1998, 31, 251.

(8) Raimondi, M.; Famulari, A.; Specchio, R.; Sironi, M.; Moroni,
F.; Gianinetti, E. THEOCHEM 2001, 573, 25.

(9) Khaliullin, R. Z.; Head-Gordon, M.; Bell, A. T. J. Chem.
Phys. 2006, 124, 204105/1.

(10) Khaliullin, R. Z.; Cobar, E. A.; Lochan, R. C.; Bell, A. T.;
Head-Gordon, M. J. Phys. Chem. A 2007, 111, 8753.

(11) Mo, Y.; Song, L.; Lin, Y. J. Phys. Chem. A 2007, 111, 8291.

(12) Valence Bond Theory; Cooper, D. L., Ed.; Elsevier: Am-
sterdam, 2002.

(13) Cooper, D. L.; Gerratt, J.; Raimondi, M. AdV. Chem. Phys.
1987, 69, 319.

(14) Hiberty, P. C.; Flament, J. P.; Noizet, E. Chem. Phys. Lett.
1992, 189, 259.

(15) Wu, W.; Song, L.; Cao, Z.; Zhang, Q.; Shaik, S. J. Phys.
Chem. A 2002, 106, 2721.

(16) Song, L.; Mo, Y.; Zhang, Q.; Wu, W. J. Comput. Chem.
2005, 26, 514.

(17) Shaik, S.; Shurki, A. Angew. Chem., Int. Ed. 1999, 38, 587.

(18) Warshel, A.; Weiss, R. M. J. Am. Chem. Soc. 1980, 102,
6218.

(19) (a) Warshel, A. Computer Modeling of Chemical Reactions
in Enzymes and Solutions; Wiley: New York, 1991. (b)
Aqvist, J.; Warshel, A. Chem. ReV. 1993, 93, 2523. (c) Villa,
J.; Warshel, A. J. Phys. Chem. B 2001, 105, 7887.

(20) (a) Hong, G.; Rosta, E.; Warshel, A. J. Phys. Chem. B 2006,
110, 19570–19574. (b) Xiang, Y.; Warshel, A. J. Phys. Chem.
B 2008, 112, 1007–1015.

(21) (a) Wu, Q.; Cheng, C.-L.; Van Voorhis, T. J. Chem. Phys.
2007, 127, 16419. (b) Sharir-Ivry, A.; Shurki, A. J. Phys.
Chem. A 2008,ASAP.

(22) Schlegel, H. B.; Sonnenberg, J. L. J. Chem. Theory Comput.
2006, 2, 905.

(23) Chang, Y. T.; Miller, W. H. J. Phys. Chem. 1990, 94, 5884.

(24) Schmitt, U. W.; Voth, G. A. J. Phys. Chem. B 1998, 102,
5547.

(25) (a) Day, T. J. F.; Soudackov, A. V.; Cuma, M.; Schmitt, U. W.;
Voth, G. A. J. Chem. Phys. 2002, 117, 5839. (b) Maupin,
C. M.; Wong, K. F.; Soudackov, A. V.; Kim, S.; Voth, G. A.
J. Phys. Chem. A 2006, 110, 631.

(26) Vuilleumier, R.; Borgis, D. J. Phys. Chem. B 1998, 102, 4261.

(27) Sonnenberg, J. L.; Schlegel, H. B. Mol. Phys. 2007, 105, 2719.

(28) Kim, Y.; Corchado, J. C.; Villa, J.; Xing, J.; Truhlar, D. G.
J. Chem. Phys. 2000, 112, 2718.

(29) Tishchenko, O.; Truhlar, D. G. J. Phys. Chem. A 2006, 110,
13530.

(30) Lin, H.; Zhao, Y.; Tishchenko, O.; Truhlar, D. G. J. Chem.
Theory Comput. 2006, 2, 1237.

(31) Goddard, W. A., III.; Dunning, T. H., Jr.; Hunt, W. J.; Hay,
P. J. Acc. Chem. Res. 1973, 6, 368.

(32) Mead, C. A.; Truhlar, D. G. J. Chem. Phys. 1982, 77, 6090.

(33) Pacher, T.; Cederbaum, L. S.; Koppel, H. J. Chem. Phys.
1988, 89, 7367.

(34) Mo, Y.; Wu, W.; Zhang, Q. J. Chem. Phys. 2003, 119, 6448.

(35) Mo, Y. J. Chem. Phys. 2007, 126, 224104.

(36) Sidis, V. AdV. Chem. Phys. 1992, 82, 73.

(37) Van Lenthe, J. H.; Verbeek, J.; Pulay, P. Mol. Phys. 1991,
73, 1159.

(38) Van Lenthe, J. H.; Dijkstra, F.; Havenith, R. W. A. Theor.
Comput. Chem. 2002, 10, 79.

(39) Sheppard, M. G.; Freed, K. F. J. Chem. Phys. 1981, 75, 4507.

(40) Hurtubise, V.; Freed, K. F. AdV. Chem. Phys. 1993, 83, 465.

(41) Martin, C. H.; Graham, R. L.; Freed, K. F. J. Phys. Chem.
1994, 98, 3467.

(42) Bernardi, F.; Olivucci, M.; Robb, M. A. J. Am. Chem. Soc.
1992, 114, 1606.

(43) Bearpark, M. J.; Robb, M. A.; Bernardi, F.; Olivucci, M.
Chem. Phys. Lett. 1994, 217, 513.

(44) Bearpark, M. J.; Bernardi, F.; Olivucci, M.; Robb, M. A. J.
Phys. Chem. A 1997, 101, 8395.

(45) Bearpark, M. J.; Smith, B. R.; Bernardi, F.; Olivucci, M.;
Robb, M. A. ACS Symp. Ser. 1998, 712, 148.

(46) Heitler, W.; London, F. Z. Phys. 1927, 44, 455.

(47) Mo, Y.; Lin, Z.; Wu, W.; Zhang, Q. J. Phys. Chem. 1996,
100, 11569.

(48) Thorsteinsson, T.; Cooper, D. L.; Gerratt, J.; Karadakov, P. B.;
Raimondi, M. Theor. Chim. Acta 1996, 93, 343.

(49) Hiberty, P. C.; Humbel, S.; Archirel, P. J. Phys. Chem. 1994,
98, 11697.

(50) Song, L.; Wu, W.; Hiberty, P. C.; Shaik, S. Chem.-- Eur. J.
2006, 12, 7458.

(51) Su, P.; Ying, F.; Wu, W.; Hiberty, P. C.; Shaik, S. ChemP-
hysChem 2007, 8, 2603.

(52) Gao, J.; Garcia-Viloca, M.; Poulsen, T. D.; Mo, Y. AdV. Phys.
Org. Chem. 2003, 38, 161.

(53) Gao, J.; Mo, Y. Prog. Theor. Chem. Phys. 2000, 5, 247.

(54) Mo, Y.; Gao, J. J. Phys. Chem. A 2001, 105, 6530.

(55) Mo, Y.; Subramanian, G.; Gao, J.; Ferguson, D. M. J. Am.
Chem. Soc. 2002, 124, 4832.

(56) Mo, Y.; Wu, W.; Song, L.; Lin, M.; Zhang, Q.; Gao, J. Angew.
Chem., Int. Ed. 2004, 43, 1986.

(57) Mo, Y.; Gao, J. Acc. Chem. Res. 2007, 40, 113.

(58) Brauer, C. S.; Craddock, M. B.; Kilian, J.; Grumstrup, E. M.;
Orilall, M. C.; Mo, Y.; Gao, J.; Leopold, K. R. J. Phys. Chem.
A 2006, 110, 10025.

184 J. Chem. Theory Comput., Vol. 5, No. 1, 2009 Song et al.



(59) Mo, Y.; Gao, J. J. Phys. Chem. B 2006, 110, 2976.

(60) Frisch, M. J. G. W. T.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Montgomery, J. R. C. J. A., Jr.; Vreven, T.; Kudin,
K. N.; Millam, J. C. B. J. M.; Iyengar, S. S.; Tomasi, J.;
Barone, V.; Cossi, B. M. M.; Scalmani, G.; Rega, N.;
Petersson, G. A.; Hada, H. N. M.; Ehara, M.; Toyota, K.;
Fukuda, R.; Ishida, J. H. M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Knox, M. K. X.; Li, J. E.; Hratchian, H. P.;
Cross, J. B.; Bakken, V.; Jaramillo, C. A. J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Cammi, A. J. A. R.; Pomelli,
C.; Ochterski, J. W.; Ayala, P. Y.; Voth, K. M. G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Daniels,

S. D. A. D.; Strain, M. C.; Farkas, O.; Rabuck, D. K. M. A.
D.; Raghavachari, K.; Foresman, J. B.; Cui, J. V. O. Q.;
Baboul, A. G.; Clifford, S.; Cioslowski, J.; Liu, B. B. S. G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Fox, R. L. M. D.
J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Challacombe,
A. N. M.; Gill, P. M. W.; Johnson, B. W. C.; Wong, M. W.;
Gonzalez, C.; Pople, J. A. Gaussian03, ReVision D.01;
Gaussian, Inc.: 2004.

(61) Chirgwin, H. B.; Coulson, C. A. Proc. R. Soc. London Ser.
A 1950, 2, 196.

CT800421Y

Hamiltonian (MOVB) Approach for Chemical Reactions J. Chem. Theory Comput., Vol. 5, No. 1, 2009 185



Location of Two Seams in the Proximity of the C2v ππ*
Minimum Energy Path of Formaldehyde

Luca De Vico* and Roland Lindh

Department of Theoretical Chemistry, Lund UniVersity,
P.O. Box 124, SE-22100 Lund, Sweden

Received August 22, 2008

Abstract: Photochemical reactions rationalization is a key aspect for the understanding and
setup of novel experiment and novel photoinitiated pathways. In this respect, the relationship
between minimum energy paths over an excited-state and the intersection to lower potential
energy surfaces is fundamental. In order to help the understanding of this relationship, in this
study we present a novel kind of constraint for geometry optimizations, namely, an “orthogonality”
constraint. Its possible applications are described. A complete example on how to retrieve the
direct relationship between a minimum energy path over an excited-state potential energy surface
and a conical intersection seam is given for C2v symmetry constrained formaldehyde. The ad-
vantages of using the novel constraint when rationalizing a (photo)chemical reaction are pre-
sented.

Introduction

Since Teller demonstrated the possibility for the existence
of crossings of potential energy surfaces,1 the interest for
such entities increased, with an exponential trend in the latest
years.2 The available computational tools, coupled with the
increasing capabilities of computers, turned the search for
potential energy surface (PES) degeneracy points into an
everyday matter,3 making it indispensable when one wants
to describe any photochemical reaction from the theoretical
chemist point of view. Formally, the crossing between two
potential energy surfaces of different spin symmetry is called
intersystem crossing (ISC), while if the two surfaces share
the same spin symmetry, the crossing is referred to as a
conical intersection (CI).4 Nevertheless, when considering
molecules with symmetry, the crossing of two surfaces of
the same spin belonging to different spatial symmetry can
be treated in the same way as an ISC.

The nature of CIs (ISCs) has been extensively studied, by
analyzing the PES around them. For example, Atchity and
co-workers gave a classification of conical intersections based
on the shape of the PES forming the CI.5 On the base of
which class a CI belongs to, they predicted different

behaviors for the molecules passing through it and conse-
quently for the photoreaction in general. Another aspect of
crossings is their extension in the molecular coordinate space.
In fact, there does not exist only one point of degeneracy
but an infinite series.6 This is usually referred to as in-
tersection space5 or intersection seam.7 The nature of the
points belonging to a seam has been recently studied by
Sicilia and co-workers.8 They analyzed the second-order
nature of conical intersections and defined if they were
minima or transition states inside the intersection space.
Through this analysis, the authors were able to give a des-
cription of the CI seam and its main features. Very recently,9

the same authors suggested an algorithm to connect the
stationary points inside the intersection space.

Maybe more relevant for the study of a photochemical
reaction is the relationship between the minimum energy
paths (MEPs) over an excited-state PES and the seam
connecting such a surface to other(s). To our knowledge,
not too many studies have been conducted in this sense.
Various attempts in this direction have been done, for
example by locating the nearest crossing to a given structure,
usually the Franck-Condon.10,11 To name a few other
examples related to different classes of molecules where the
seam has been studied in more details, ref 12 reports a CI
seam involved in the photochemistry of the ring-opening of
cyclohexa-1,3-diene. Migani and co-workers analyzed the
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CI seams of various models of the retinal chromophore.13

Cembran et al. reported an extensive area of degeneracy for
azobenzene,14 while Frutos et al. described the involvement
of CI seams in the photochemistry of tricyclo[3.3.0.02, 6]octa-
3,7-diene.15 The knowledge of the relationship between a
MEP and a CI seam has been, most interestingly, related
also to the possibility of fine controlling the outcome of a
photoreaction.16 In fact, by knowing which internal modes
correlate the MEP and the seam, one could define which
vibrational levels should be pre-emptively excited in order
to populate such modes. In turn, a coherent femtosecond
pulsed laser experiment could be devised, in order to obtain
the maximum yield of a desired photoproduct.17

The previously cited theoretical articles have one feature
in common: the seam has been retrieved once the minimum
energy crossing point (MECP) has been found or if a point
along the MEP is also a crossing point. Starting from this
structure, the rest of the seam is conceived. In a second
moment, the seam and the MEP are put in energetic relation
between each other. In other words, the relationship seam –
MEP is partial (only energetic data are considered) and
indirect. We devised a way to correlate a minimum energy
path computed on an excited-state to the closest crossing
that could be reached by vibrations along modes other than
those involved in the MEP itself, in other words, along those
modes perpendicular to the motion along the MEP. Since
the MEP is defined as the steepest descend path, that is by
the gradient, the crossing has to be located in the subspace
of coordinates orthogonal to the gradient vector. In this way,
the relationship seam – MEP is direct and easier to be
rationalized. This is achieved because each point of the MEP
is directly related to the points of the seam, in a one-to-one
manner.

In the next paragraphs, we will give some more details
on how this has been achieved, plus an application of the
method to C2V symmetry constrained formaldehyde on its
evolution along the ππ* excited state, together with related
discussion.

2. Method

The methods section is divided into five parts: in the first
we will sketch the theory behind the new kind of constraint
we introduced, followed by a general discussion about its
possible applications and its implementation. Finally, we will
give the computational details of the application of the new
kind of constraint to the search of a CI seam close to the
C2V ππ* MEP of formaldehyde.

2.1. A New Type of Constraint: Theory. A new kind
of constraint has been introduced and applied, an “orthogo-
nality” constraint. Given a point in the coordinate space of
a molecule (structure) and a vector associated to it (typically
the energy gradient), the coordinate space available during
a geometry optimization is reduced by the constraint to the
subspace of coordinates orthogonal to the vector.

The constraint to fulfill can be expressed as

〈g · (r0 - r) 〉 ) 0 (1)

where g is the reference vector (gradient), r0 is the reference
coordinates, and r is the coordinates of the current structure.

This kind of constraint is nearly useless when applied
alone. In fact, in a typical situation, the reference vector is
the gradient computed at the reference geometry g ) g(r0).
Once the orthogonality constraint is applied, the result of a
constrained optimization would be the same reference geo-
metry, since it is a minimum in the orthogonal subspace too.
In fact, the only possibility to reach a structure with lower
energy would be to follow the gradient, which has been cut
out by the constraint. Once the geometry reaches the
reference structure, the constraint vanishes, since one has r
) r0 in eq 1.

In an ideal situation, if the reference structure is a sta-
tionary point (minimum or transition state), the orthogonality
constraint is noneffective. In fact, the reference gradient
would be zero by definition (g(req) ) 0 in eq 1). The other
eventual applied constraints would be the only effective.

2.2. Current Application to Photoreactions. The most
interesting use, instead, is when the orthogonality constraint
is coupled together with some other kind of constraint. This
will induce r * r0, making eq 1 meaningful. For example,
in the present contribution, we coupled the orthogonality
constraint together with the energy difference constraint. By
doing so, we searched for the lowest energy degeneracy
between two given potential energy surfaces inside the
subspace orthogonal to the gradient computed at a given
geometry. The obtained structure is not the absolute MECP
but the lowest in energy and possibly closest crossing to the
reference structure or to the starting geometry (Vide infra).
This is depicted in Scheme 1.

As for the hyperspherical constraint,10 it is possible to
specify a starting geometry and a reference structure/vector
relative to another structure previously determined. For
example, this has been applied in the present contribution
to locate an intersection seam in the proximity of a previously
computed MEP. In fact, the starting geometry (SG) was
chosen to be already part of the seam that we wanted to
explore. This, in turn, ensured continuity in the obtained
seam. The gradient vector (g) and the reference structure
(RS), instead, were those of the MEP structure for which

Scheme 1
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we were looking for the closest crossing point. More details
on this procedure will be given in section 3.1.

2.3. Possible Applications to Thermal Reactions. An-
other possible usage of the orthogonality constraint is to find
additional pathways leaving from a minimum. This, in turn,
would help in locating secondary paths in, for example,
thermal reactions. This usage has not been exploited in the
present contribution, so it will be shortly described here. The
procedure is depicted in Scheme 2. All minimizations de-
scribed in this section are supposed to be fully successful.

Once a minimum structure (Min) has been optimized, it
is possible to locate the first structure of a path (M1) leading
away from it, by employing a normal hyperspherical con-
straint. That is, the only applied constraint is that M1 is at
a given distance l from Min. In this way, the structure with
the lowest energy at the distance l from Min is found. In
other words, given that the constrained optimization is
successful, M1 is the global minimum with respect to the
hypersphere of radius l around Min.

One can define the vector between the two structures as
the difference between the coordinates: f ) CoordM1 -
CoordMin. It is possible to start from Min another hyper-
spherical search with the same radius l and employing the
additional constraint of being performed in the subspace
orthogonal to f. The so-found structure (M2) will be at higher
energy than M1, but still a local minimum on the hyperspere.
In other words, the two subsequent optimizations on the same
hypersphere of radius l yields two different minima: the
lowest in energy M1 and the second to lowest M2.

In our view, M2 represents the first point along a path
that would lead from Min to a secondary reaction product.
In principle, it is possible to define another vector f′ as the
difference between the coordinates of M2 and Min. A sub-
sequent hyperspherical search from Min in the subspace
orthogonal to both f and f′ would find a third local minimum,
and so on. This procedure could be applied as long as the
studied molecule has available degrees of freedom.

2.4. Implementation. The orthogonality constraint has
been implemented in the MOLCAS code,18 to be used in the

same way as the other implemented constraints, through the
usage of Lagrangian multipliers.10 Our implementation10

follows that of Anglada and Bofill19 for constrained opti-
mizations, in combination with the Rational Function ap-
proach20 and no line-search techniques. In this approach the
coordinate space is divided into two parts, one with dimen-
sionality m where the constraint is fulfilled, and one of
3N-6(5)-m dimensions where an energy minimization is
conducted (N being the number of atoms). In the first
subspace the minimization is simply linear, according to eq
8 in ref 10. There is no need for an analytic Hessian
evaluation. In the second subspace, the method makes use
of the Broyden Fletcher Goldfarb Shanno (BFGS)21 method
for updating the approximate Hessian matrix. All the
described optimization procedures require the evaluation of
only first derivatives of the energy with respect to the spatial
coordinates.

2.5. Computational Details. All calculations were per-
formed in C2V symmetry using a triple-� ANO-RCC basis
set22 with contraction scheme [4s3p2d1f] for C and O,
[3s2p1d] for H. Energies and analytical gradients were
computed at the state average (SA) complete active space
multiconfigurational self-consistent field (CASSCF)23 level
of theory. The computed roots were as follows: the first two
roots of symmetry 1A1 (S0 and ππ*) and the first root of
symmetry 1B1 (σπ*). The active space comprised 6 electrons
in 5 orbitals (6-in-5). The orbitals were chosen as the C-O
π, π*, σ, and σ*, plus the O lone pair perpendicular to the
π system. All minimum energy path (MEP) and conical
intersection (CI) optimizations were performed as constrained
optimization, using Lagrangian multipliers, as described in
ref 10. All calculations were performed using the MOLCAS

18,24

version 7.1 suite of programs for quantum chemistry.

3. Results and Discussion

3.1. MEP and Seams Construction. The coordinates and
CASSCF energies of all the computed geometries are
reported in Tables 2 and 3, respectively, in the Supporting
Information. The formaldehyde structure was fully optimized
on the S0 state. Such geometry was used as a starting point
(Franck-Condon structure, FC) for a subsequent MEP
search in the ππ* state. The used step was 0.05 au (in mass-
renormalized mass-weighted coordinates).25 The MEP search
was stopped as soon as a minimum was located (Min ππ*).
The MEP is reported in Figure 1 as a red continuous line.
For each MEP point, the S0 (light blue dot-dashed line in
Figure 4 in the Supporting Information) and σπ* (dashed
green line in Figure 1) energies were computed. A conical
intersection between the ππ* and the σπ* potential energy
surfaces (PESs) was also located as a minimum energy
crossing point. This MECP was found to lie close to the
MEP structure MEP6 that lies 0.3 au from FC.

Using as reference the FC structure and its energy gradient
vector as computed on the ππ* PES, another conical in-
tersection was searched, employing the additional orthogo-
nality constraint. This structure (SA0), even if it has nearly
the same energy as the ππ* state energy of FC, presents a

Scheme 2
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quite distorted geometry. See Table 1. SA0 is around 0.7 au
far from FC.

SA0 was used as the starting structure to locate the rest
of SEAM A, in an iterative way. In fact, SA1 was located
via a constrained optimization, where the constraints were
the ππ* and σπ* energies difference and the condition of
orthogonality to MEP1, the first MEP point after FC, as
depicted in Scheme 1. In other words, MEP1 was used as
RS and the gradient as g vector. SA0 was, instead, the SG.
The geometry of SA1 was used as the starting geometry to
locate SA2 in a similar manner and so on for the rest of the
SEAM A points. In this way, continuity of the seam was
ensured. The results are presented in Figures 1 and 2 as a
dotted dark blue line.

As can be seen in Figure 2, SEAM A is never closer than
0.5 au to the computed MEP. On the other hand, MECP
was found to be quite close to the MEP (less than 0.05 au).
We decided to search for an alternative seam, using MECP
as SG and MEP6 for reference, both structure and gradient
vector. In this way we located another crossing point not
part of SEAM A. We named this structure SB6. Using the
geometry of SB6 as the starting structure, we located the
other points of SEAM B iteratively, as before, as relative to
the entire MEP structures. These are reported in Figures 1
and 2 as a dotted violet line.

3.2. Seams Comparison. As can be clearly seen from
Figures 1 and 2, the two seams are quite different from each
other. As previously mentioned, SEAM A is almost always

at the same energy (Figure 1) but is never close to the MEP
(Figure 2). The situation is quite the opposite for SEAM B.
The seam starts quite high in energy (Figure 4 in the
Supporting Information) but gets very close to the MEP
(Figure 2) before slowly getting far from it again. Notably,
SEAM A is always lower in energy than the ππ* energy of
FC, while SEAM B goes under this value only in close
proximity to MECP. On the other hand, after FC SEAM A
is always higher in energy than the MEP.

3.3. MEP - Seam Relation. The differences of the two
seams make them differently accessible. In fact, by simply
following the MEP, SEAM B would be accessed only when
the MEP reaches the proximity of MECP. This motion
requires some stretching of the CdO bond. To access SEAM
B otherwise earlier, a certain quantity of extra vibrational
energy is needed.

Since it is always far from the MEP, also SEAM A cannot
be accessed unless some vibrational energy is spent. Figure
3 shows the different structural changes to access SA0 or
SB0 from FC. If FC would possess enough vibrational
energy along its CH2 scissoring mode, the molecule would
then access SEAM A. If, instead, it would possess enough
vibrational energy along its CH2 symmetric stretching mode,
it will access SEAM B. Since the two modes, CH2 scissoring
and stretching, have different and well separated absorption
peaks (ca. 2782 and ca. 1500 cm-1 respectively),26 it should
be possible to direct the decay toward one of the seams. If,
otherwise, the most populated vibrational mode would be
the CdO stretching (ca. 1746 cm -1),26 then the molecule
would follow preferably the MEP and decay at MECP.

Obviously, apart from the vibrational mode, also the
quantity of vibrational energy is important. As evident from
Figure 1, in order to reach SEAM A is necessary less (no)
energy than to reach the first part of SEAM B. A higher
level computational method taking in consideration full
electron correlation like (MS-)CASPT2,27 would then be
needed for a more quantitative evaluation of the amount of
vibrational energy needed.

3.4. Photoreaction Rationalization. Through the analysis
of the direct relationship between the computed MEP and
seams, it is possible to rationalize the photoreaction of for-
maldehyde.

Figure 1. MEP - seam energy relation. For the MEP points,
both ππ* and σπ* energies are reported. Along the seams
these two potential energy surfaces are degenerate. Energies
computed as relative to the S0 energy of FC, in kcal/mol.
Reaction coordinate in mass-renormalized mass-weighted a.u.
The complete SEAM B is reported in Figure 4 in the Sup-
porting Information.

Table 1. Geometrical Data (Distances in Ångstroms,
Angles in Degrees) for the Notable Structures Discussed in
the Text

structure O-C C-H O-C-H

Min S0 FC 1.215 1.082 121.2
Min ππ* 1.631 1.065 118.9
MECP 1.561 1.060 114.9
SA0 1.810 1.059 74.5
SB0 1.337 0.468 144.5

Figure 2. MEP - seam distance relation, in mass-renormal-
ized mass-weighted au.
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After the photoexcitation, depending on which vibrational
mode is active, it is possible to indicate three possible fates
for the molecule. For the purposes of this study, this analysis
is only qualitative, since the energetic data are based on
CASSCF results and not on a more accurate method, as
previously mentioned. This is depicted also in Figure 3.

(i) If formaldehyde is vibrationally excited along its CdO
stretching mode, it will follow the MEP, and decay on the
lower state at MECP or in close proximity to it. No vib-
rational energy is strictly needed to access MECP, since it
is part of the MEP.

(ii) When the CH2 scissoring mode is active, the molecule
has a high chance of reaching SEAM A, since it is nearly at
the same energy as FC.

(iii) If the CH2 symmetric stretching mode is populated
with sufficient energy, it is possible for the molecule to decay
through SEAM B earlier than MECP.

Obviously, the amount of energy needed to reach SA0 or
SB0 should take into consideration also the eventual presence
of a barrier. However, in the proximity of the MEP it is
expected that the potential energy surface, in the direction
perpendicular to the MEP, is harmonic, i.e. no energy barrier
to reach the seam is expected.

The general methodology we described can be applied to
any kind of photoreaction. We would like to stress the
importance such an analysis might have with the following
example. One could consider the situation reported in Scheme
3, similar to what was reported in Figure 2. Along the MEP
of Scheme 3, a MECP has been found. The usual method-
ologies would use this structure as a starting point to explore
and characterize SEAM Y. It is possible, although, that this
would not find SEAM X. If SEAM X would be energetically
accessible from the MEP, then not including it would cause
serious mistakes. For example, by considering only the rela-
tionship between the MEP and SEAM Y, one might draw

some erroneous conclusions about the decaying rate of the
excited molecule. Moreover, if the photoproducts of SEAM
X and SEAM Y would be different, the photoproduct of
SEAM X would be totally ignored. With our approach,
instead, SEAM X would be immediately found, as happened
with formaldehyde. Starting then from MECP, also SEAM
Y would be located.

If the molecule would possess enough degrees of freedom,
additional seams could be searched. Let us consider a point
of the MEP, for example the tenth, MEP10. By the previous
analysis, the corresponding seam points SX10 and SY10
belonging to SEAM X and Y, respectively, have been found.
It is possible to compute the geometry difference vectors f
) CoordSX10 - CoordMEP10 and f′ ) CoordSY10 - CoordMEP10.
For each of the vectors g (the gradient of MEP10), f and f′,
one orthogonality constraint is applied. A subsequent opti-
mization of an energy difference structure would locate a
point belonging to a third different seam, SEAM Z. This
procedure could be carried on for as long as there are
available degrees of freedom. In practice, of course, the
energy difference between the MEP and the seam should
indicate when it is not meaningful anymore to search for
additional seams.

4. Conclusions

In this study we presented a novel kind of constraint, namely
a orthogonality constraint. We demonstrated how the usage
of this constraint in conjunction with the one to minimize
the energy difference between two potential energy surfaces
can be successfully used to describe conical intersection
seams, in relationship to excited-state minimum energy paths.
In particular, we showed how to locate two different seams
in the proximity of the C2V ππ* minimum energy path of
formaldehyde. The direct relation seam - MEP permitted the
easy rationalization of the normal modes possibly involved
in the photoreaction.

As previously mentioned, the orthogonality constraint
requires only first derivatives of the energy with respect to
the spatial coordinates. This fact permitted us to explore a
seam without the further need of an analytical Hessian. An
approximative Hessian in association with the BFGS update
method is, in fact, sufficient.

Figure 3. Structures of FC, SA0, SB0, and MECP. Indicated
the relative vibrational modes, of A1 symmetry, involved when
the molecule exits FC. Also, a qualitative indication of the
amount of energy needed to reach each structure is reported.

Scheme 3
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As an outlook, we are currently studying how to implement
an explicit vibrational analysis of the reduced Hessian along
the MEP. In other words, for each of the retrieved MEP
points, a vibrational analysis should be performed on all
molecular modes except the gradient. Coupling this informa-
tion with the knowledge of where the seam lies should give
a complete as possible view of the photochemical event.
Today, this can be achieved only through the use of the com-
putationally very expensive molecular dynamics methods.

It is our hope that in the future our procedure will be
applied to study how to enhance the quantum yields of
desired photoproducts by the rational design of coherent
femtosecond pulsed laser experiments. The application of
our constraint in order to explore the paths leading to se-
condary products of thermal reaction is also highly ex-
pected. Also in this case, the geometries of the structures
along the different paths should be analyzed in relationship
with the vibrational modes of the fundamental state mini-
mum. This, in turn, should provide a rational way to direct
thermal reaction through excitation by specific infrared
frequencies.
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Abstract: Calculations on a large set of free radicals containing atoms of the second and third
row show that the computational model defined by the new N07D basis set and hybrid density
functionals (B3LYP and PBE0) provides remarkably accurate g-tensor values at reasonable
computational costs. Since in previous works it has been shown that the same computational
model delivers reliable results also for structural parameters and hyperfine couplings, the route
seems paved toward full a priori computation of EPR spectra of large free radicals both in vacuo
and in condensed phases.

Introduction

The electronic g-tensor is one of the most important
parameters of electronic paramagnetic resonance spectros-
copy (EPR) since it contains a wealth of information about
the electronic and geometrical structure of molecules with
unpaired electrons. Although, theoretical approaches using
density functional theory (DFT) have met considerable
success for the calculation of hyperfine coupling constants,1-8

only a limited number of systematic studies have been
performed for g-tensors.9-11 All magnetic tensors are,
however, needed for developing an integrated computational
approach to EPR spectra taking into account the proper
stereoelectronic, environmental, and vibrational averaging
effects.12-14 Validation of effective methods able to compute
the different building blocks of such an integrated approach
for large systems is currently under way in our laboratories.14,15

As recently reported,7,8 the hyperfine coupling constants
calculated with PBE0 and B3LYP functionals and the new
N07D basis set are in excellent agreement with experimental
data; in particular our results represent significant improve-
ments with respect to those delivered by conventional (e.g.,
cc-pVXZ) and purposely tailored (e.g., EPR-II and EPR-

III) basis sets.16 So, we decided to extend this investigation
to other EPR parameters and, in particular, to the g-tensors.
In this paper we analyze the performance of the N07D basis
set for a large number of radicals (92) for which reliable
experimental values17-76 are available for g-tensors. This
set is large enough to become, in our opinion, a reference
benchmark for new methods and/or basis sets.

In our previous papers7,8 we have discussed geometrical
and energetic data, together with hyperfine coupling constants
for a data set including the present one, so that we will
analyze in the following only g-tensor values.

Our aim is to show that a single model (functional/basis
set) provides accurate results for second- and third-row atoms
and for a large set of different radicals. In our opinion, the
quality of the results and the reasonable computational cost
represent a convincing proof of the utility of this basis set
(N07D) in the calculation of EPR parameters.

Computational Details

All the calculations were carried out by the Gaussian03
package77 using the B3LYP78 and PBE079 hybrid density
functionals with the N07D7,8 basis set, which was recently
obtained adding to a double-� description of valence orbitals
single sets of optimized core-valence s (on all atoms except
H), diffuse p (on all atoms except H), polarization (on all
atoms), and diffuse d (on O, F, Cl atoms) functions. The
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Table 1. Theoretical and Experimental giso-Tensor (in ppm)

stucture PBE0/EPR-IIIa B3LYP/EPR-IIIa PBE0/N07D B3LYP/N07D exp ref

1 2.0008 2.0008 2.0010 2.0010 2.0007 17
2 2.0005 2.0005 2.0006 2.0006 2.0000 18
3 2.0002 2.0003 2.0004 2.0003 2.0003 19
4 2.0027 2.0027 2.0027 2.0027 2.0027 20
5 2.0040 2.0041 2.0039 2.0039 2.0045 21
6 2.0040 2.0040 2.0038 2.0039 2.0041 21
7 2.0033 2.0034 2.0032 2.0033 2.0031 21
8 2.0028 2.0028 2.0027 2.0028 2.0028 22
9 2.0042 2.0042 2.0041 2.0041 2.0036 23
10 2.0027 2.0027 2.0026 2.0027 2.0027 20
11 2.0028 2.0028 2.0027 2.0028 2.0028 24
12 2.0029 2.0029 2.0028 2.0028 2.0026 25
13 2.0045 2.0047 2.0044 2.0045 2.0049 26
14 2.0046 2.0047 2.0044 2.0045 2.0047 27
15 2.0044 2.0045 2.0043 2.0044 2.0045 28
16 2.0043 2.0044 2.0041 2.0042 2.0043 29
17 2.0046 2.0047 2.0044 2.0045 2.0045 29
18 2.0044 2.0045 2.0042 2.0043 2.0045 30
19 2.0034 2.0035 2.0033 2.0034 2.0032 31
20 2.0036 2.0037 2.0035 2.0036 2.0035 29
21 2.0037 2.0038 2.0036 2.0037 2.0036 32
22 2.0038 2.0039 2.0037 2.0037 2.0035 33
23 2.0039 2.0039 2.0037 2.0038 2.0037 29
24 2.0028 2.0028 2.0028 2.0028 2.0028 34
25 2.0028 2.0029 2.0028 2.0028 2.0029 22
26 2.0038 2.0039 2.0037 2.0037 2.0038 35
27 2.0038 2.0039 2.0037 2.0037 2.0038 35
28 2.0039 2.0039 2.0037 2.0038 2.0038 35
29 2.0038 2.0039 2.0037 2.0037 2.0036 36
30 2.0035 2.0035 2.0034 2.0034 2.0034 37
31 2.0002 2.0002 2.0004 2.0004 2.0024 38
32 2.0036 2.0034 2.0039 2.0039 2.0042 39
33 2.0007 2.0007 2.0008 2.0008 2.0024 38
34 2.0036 2.0035 2.0037 2.0037 2.0042 39
35 2.0036 2.0035 2.0037 2.0037 2.0042 39
36 2.0034 2.0033 2.0035 2.0035 2.0039 40
37 2.0019 2.0018 2.0019 2.0019 2.0020 38
38 2.0056 2.0057 2.0053 2.0055 2.0050 41
39 2.0057 2.0058 2.0054 2.0056 2.0050 41
40 2.0057 2.0058 2.0054 2.0056 2.0049 42
41 2.0041 2.0042 2.0039 2.0041 2.0028 34
42 2.0046 2.0047 2.0045 2.0047 2.0028 43
43 2.0047 2.0048 2.0045 2.0048 2.0057 44
44 2.0050 2.0052 2.0048 2.0052 2.0060 44
45 2.0048 2.0050 2.0047 2.0050 2.0055 45
46 2.0042 2.0043 2.0041 2.0043 2.0062 46
47 2.0050 2.0052 2.0048 2.0052 2.0063 47
48 2.0050 2.0051 2.0048 2.0049 2.0047 48
49 2.0049 2.0051 2.0048 2.0049 2.0047 48
50 2.0068 2.0069 2.0064 2.0066 2.0057 37
51 2.0063 2.0064 2.0060 2.0061 2.0055 49
52 2.0063 2.0063 2.0059 2.0060 2.0054 49
53 2.0062 2.0063 2.0058 2.0060 2.0059 45
54 2.0063 2.0064 2.0060 2.0061 2.0060 50
55 2.0063 2.0064 2.0060 2.0061 2.0059 51
56 2.0010 2.0010 2.0011 2.0011 2.0013 17
57 2.0091 2.0091 2.0085 2.0089 2.0041 52
58 2.0080 2.0084 2.0076 2.0081 2.0093 17
59 1.9993 1.9993 1.9995 1.9994 2.0002 18
60 2.0016 2.0016 2.0017 2.0017 2.0010 53
61 2.0003 2.0002 2.0020 54
62 2.0008 2.0009 2.0036 55
63 2.0043 2.0046 2.0032 56
64 2.0017 2.0020 2.0009 56
65 2.0024 2.0027 2.0017 57
66 2.0037 2.0037 2.0032 58
67 2.0036 2.0036 2.0031 59
68 2.0034 2.0035 2.0032 20
69 2.0016 2.0017 2.0012 60
70 2.0033 2.0033 2.0030 59
71 2.0053 2.0054 2.0050 59
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inner electrons of second- and third-row atoms are described
by the 6G basis set.80

Geometry optimizations and evaluations of harmonic
frequencies have been performed in the gas-phase using
analytical gradients and Hessians.

The gyromagnetic tensor can be written as g ) ge13 + ∆gRM

+ ∆gG + ∆gOZ/SOC where ge is the free-electron value
(2.0023193). Computation of the relativistic mass (RM) and
gauge (G) corrections is quite straightforward because they are
first-order contributions.81 The last term arises from the coupling
of the orbital Zeeman (OZ) and the spin-orbit coupling (SOC)
operator. The OZ contribution is computed using the gauge-
including atomic orbital (GIAO) approach,82 whereas for light
atoms the two electron SOC operator can be reliably ap-
proximated by a one electron operator involving adjusted
effective nuclear charges.83 Although those charges were
optimized for MCSCF wave functions, a number of test
computations showed that they are nearly optimal for DFT
computations too. Upon complete averaging by rotational
motions, only the isotropic part of the g tensor survives, which
is given by giso ) 1/3Tr(g). Of course, the corresponding shift
from the free electron value is ∆giso ) giso - ge. All the results
will be given in the following as g-tensor values.

Results and Discussion

The N07D basis set7,8 has been assessed by comparison with
EPR-III84 basis set for the g-tensors. Our results are collected

in Tables 2-4 and compared with experimental results. A
variety of molecules containing atoms from the second and
third row of the periodic table have been studied. The
selected set of 92 radicals (shown in Figure a-b) includes
neutral, cationic, anionic, localized, and conjugated species.
Before considering detailed results, we recall that the EPR-
III84 basis set is available only for hydrogen and second-
row atoms (Tables 1 and 2).

A statistical analysis has been performed for the whole
data set. In detail, we report the number of data (N), mean
absolute deviation (MAD), and data range between calculated
and experimental values. Next we give the correlation
coefficient (R2), slope, and intercept of the least-squares line.
The MAD is an absolute value, so that all deviations are
converted to positive numbers, added, and then averaged.

Table 1. Continued

stucture PBE0/EPR-IIIa B3LYP/EPR-IIIa PBE0/N07D B3LYP/N07D exp ref

72 2.0087 2.0089 2.0087 61
73 2.0116 2.0118 2.0130 62
74 2.0166 2.0200 2.0250 56
75 2.0028 2.0028 2.0030 63
76 2.0057 2.0059 2.0050 64
77 2.0065 2.0067 2.0059 65
78 2.0032 2.0031 2.0035 62
79 2.0044 2.0048 2.0030 66
80 2.0119 2.0121 2.0123 67
81 2.0020 2.0074 2.0070 68
82 2.0063 2.0063 2.0055 69
83 2.0044 2.0042 2.0058 68
84 2.0068 2.0070 2.0071 70
85 2.0068 2.0073 2.0045 71
86 2.0088 2.0088 2.0084 72
87 2.0086 2.0086 2.0079 72
88 2.0105 2.0105 2.0094 73
89 2.0066 2.0065 2.0061 74
90 2.0085 2.0084 2.0085 75
91 2.0076 2.0075 2.0071 72
92 2.0086 2.0086 2.0081 76

a Single point calculations on geometries optimized at the PBE0/N07D level.

Table 2. Data Analysis for Structures with Second-Row Atomsa

PBE0/EPR-IIIb B3LYP/EPR-IIIb PBE0/N07D B3LYP/N07D exp

60 molecules
MAD 0.0006 0.0006 0.0005 0.0005
max absolute error 0.0050 0.0050 0.0044 0.0048
R2 0.7303 0.7447 0.7403 0.7505
intercept 0.1046 0.0440 0.2439 0.1470
slope 0.9478 0.9781 0.8782 0.9266
max 2.0091 2.0091 2.0085 2.0089 2.0093
min 1.9993 1.9993 1.9995 1.9994 2.0000

a MAD (mean absolute deviation in Gauss) ) Σgcalc - gexp/N. b Single point calculations on geometries optimized at the PBE0/N07D level.

Table 3. Data Analysis for Structures with Second- and
Third-Row Atomsa

PBE0/N07D B3LYP/N07D exp

92 molecules
MAD 0.0006 0.0006
max absolute error 0.0050 0.0048
R2 0.8159 0.8525
intercept 0.1369 0.0595
slope 0.9317 0.9704
max 2.0120 2.0121 2.0130
min 1.9995 1.9994 2.0000

a MAD (mean absolute deviation in Gauss) ) Σgcalc -gexp/N.
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Moreover, regression analysis represents, in our opinion, the
simplest and most useful approach for an unbiased com-
parison between large sets of computed and experimental
values.

We analyze the data in two steps. In the first one, we
consider the 60 structures (Table 2) containing second-row
atoms (Figure a) and compare the results obtained with the
new basis set with both experimental and theoretical (EPR-
III) data; next, we compare for all structures, i.e. including
those containing also third-row atoms (Table 3), the g-tensors
values calculated with the N07D basis set to experimental
data. In general terms our calculations (Tables 1-3) show
that the density functional (PBE0 vs B3LYP) has a marginal
effect on the magnitude of the g-tensor (Tables 1-3). Thus,
the performance of the basis sets has been evaluated using
the PBE0 and B3LYP functionals and compared in Tables
2 and 3 (MADs). The N07D results (Table 2) are slightly
better (0.0005 vs 0.0006 ppm for both functionals) than the
EPR-III results in terms of MADs, and the corresponding
computational cost is significantly lower. As a matter of fact,
the difference between N07D basis sets for PBE0 and
B3LYP functional involves only tight s functions, which have
a negligible effect on valence properties like g-tensors. In
the same vein, 6-31+G(d,p) results should be comparable
for g-tensors, but this is not the case for structures and
hyperfine parameters. The strength of the N07D basis set is
the contemporary reproduction of all those properties at a
reasonable cost: this is especially significant for second-order
properties (like g-tensors) whose computation has a scaling
with the number of basis functions significantly worse than
that of first order properties (like hyperfine properties). For

instance, the number of contracted functions for a second-
row atom is 19 and 40 for N07D and EPR-III basis sets,
respectively. The N07D basis set is thus characterized by
an excellent accuracy/time ratio: this is a crucial result for
our aim of using a unique functional/basis set model for the
calculation of geometric, electronic, and magnetic properties
of free radicals.

The performances of the B3LYP/N07D and PBE0/N07D
models for a typical problem involving at the same time
stereoelectronic, vibrational, and environmental effects can
be judged by the results reported in Tables 4 and 5 for the
glycine13c,15a and glycyl10b radicals (Figure 2) in condensed
phases. Let us start from the glycine radical. In Table 4 are
reported the principal components of the g-tensors (δgxx, δgyy,
and δgzz) and the giso values carried out using both functionals
(PBE0 and B3LYP) and basis sets (EPR-III and N07D)
together with the giso value measured in aqueous solution
(2.00340 ( 0.00005). Since the g-tensors computed for the
minimum energy structure in vacuum are significantly tuned
by both intramolecular vibrations and by solvent librations,
the reported results are obtained by averaging over 100
frames extracted at regular time steps from the ab initio
dynamics described in ref 15a. As shown, the g-tensors are
sensitive to the conformation of the radical, e.g. the g-tensors
of GlyRcis and GlyRtrans are significantly different (Table 4).
In particular, the results obtained with the N07D basis set
for GlyRcis are in remarkable agreement with experiment,
confirming the prevalence of this isomer in aqueous solution
suggested by direct energetic evaluations.

In Table 5, we compare our results for the glycyl radical
with the theoretical ones issuing from PBE0/EPR-III com-

Table 4. Calculated and Experimental g-Tensors (ppm) of Glycine Radical in Aqueous Solution

exp PBE0/EPR-III PBE0/N07D B3LYP/EPR-III B3LYP/N07D

cis trans cis trans cis trans cis trans cis trans

∆gxx 2503.3 2620.4 2276.2 2388.2 2593.1 2702.6 2362.9 2468.5
∆gyy 1386.3 1994.9 1259.1 1814.9 1437.8 2059.2 1295.9 1857.5
∆gzz -177.4 -175.7 -171.9 -172.0 -179.4 -177.6 -175.3 -173.2
giso 2.00340 2.00340 2.00356 2.00380 2.00344 2.00366 2.00360 2.00385 2.00348 2.00370

with ∆PCM-gas

∆gxx 2586.3 2565.7 2359.2 2333.5 2676.1 2647.9 2445.9 2413.8
∆gyy 1413.7 1928.2 1286.5 1748.2 1465.2 1992.5 1323.3 1790.8
∆gzz -191.8 -187.1 -186.3 -183.4 -193.8 -189.0 -189.7 -184.6
giso 2.00340 2.00340 2.00360 2.00375 2.00348 2.00361 2.00364 2.00380 2.00352 2.00365

with ∆GLOB/ADMP-gas

giso 2.00340 2.00340 2.00356 2.00371 2.00344 2.00357 2.00360 2.00376 2.00348 2.00361

Table 5. Calculated and Experimental g-Tensors (ppm) of Glycyl Radical in Solution (Water)a

∆g298° ∆gsolv ∆ggasN07Db ∆ggas EPR-IIIb ∆ggas EPR-IIIc

∆gxx -26.4 320.9 2190.1 2423.5 2363.9
∆gyy -28.9 -489.4 1402.1 1546.4 1524.9
∆gzz 4.4 -5.4 -164.9 -170.3 -173.3

Best estimate expd

N07Db EPR-IIIb EPR-IIIc RNR RNR PFI BSS N-acetyl glycyl

∆gxx 2484.6 2718.0 2658.4 1900 2000 2400 2200 2200/1900
∆gyy 883.8 1028.1 1006.6 1000 1000 1600 1300 800/900
∆gzz -165.9 -171.3 -174.3 0 0 200 -100 -300/400

a The experimental data are given with an error of (400 ppm. b Geometry optimized at the PBE0/N07D level. c Geometry optimized at
the PBE0/6-31+G(d,p) level. d From ref 11a.
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putations and with experimental data obtained for different
enzymes and for N-acetylglycyl radical. In general, the
g-tensors calculated with the N07D basis set are slightly
smaller than those obtained with EPR-III basis set. Moreover,
as reported in previous papers, the g-tensors are affected by

both direct and indirect solvent effects as well as by
intramolecular motions. Comparison with experiment con-
firms the remarkable performances of B3LYP/N07D and
PBE0/N07D computational models when taking into account
the proper dynamical and environmental effects.

Concluding Remarks

The present paper reports the results of a systematic
computational study devoted to the calculation of g-tensor
values using the new N07D basis set. The PBE0/N07D and
B3LYP/N07D results for a representative set of organic free
radicals seem accurate enough to allow for quantitative
studies. This finding together with the computational ef-
ficiency of the approach suggest that we dispose of a quite
powerful tool for the study of free radicals, especially taking
into account that the same density functional and basis set
can be used for different properties and for second- and third-
row atoms. Furthermore, the availability of effective discrete/
continuum solvent models and of different dynamical
approaches, together with the reduced dimensions of the
N07D basis set, allow for performing comprehensive analy-
ses aimed at evaluating the roles of stereoelectronic, vibra-
tional, and environmental effects in determining the overall

Figure 1. Structures of the radicals studied with (a) second-row atoms and (b) third-row atoms.

Figure 2. Structures of glycine and glycyl radicals. The
orientations of the principal axes of the g-tensor are also
shown.
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properties of large flexible radicals of current biological and/
or technological interest.
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Abstract: Modern ab initio and multiscale methods enable the simulation of vibrational properties
of very large molecules. Within the harmonic approximation, the traditional generation of the
spectra based on the force field diagonalization can become inefficient due to the excessive
demands on computer time and memory. The present study proposes to avoid completely the
matrix diagonalization with a direct generation of the spectral shapes. For infrared absorption
(IR) and vibrational circular dichroism (VCD) electric and magnetic dipole moments are
propagated in a fictitious time and spectral intensities are obtained by Fourier transformation.
The algorithm scales quasi-linearly, and for model polypeptide molecules the method was found
numerically stable and faithfully reproduced exact transition frequencies and relative intensities.

1. Introduction

Modern vibrational spectroscopy provides a powerful means
for studying the structure of polymeric materials and biologi-
cal molecules.1 In particular, the infrared absorption (IR) and
vibrational circular dichroism (VCD) techniques shed light
on structure and structural transitions in peptides and
proteins,2,3 nucleic acids,4,5 biological membranes,6 and on
enzymatic function.7 Kinetic and nonlinear response en-
hancements are possible owing to the time-dependent8 and
two-dimensional (two-photon) techniques.9

Ultimately, the information about the structure and dy-
namics of studied systems can be verified by comparison of
the measured spectra with simulations. Unfortunately, struc-
tural interpretation of the vibrational spectra is often far from
being straightforward, especially for large molecules with a
plethora of overlapping spectral transitions. Although the
molecular size remains the main limitation for quantum
mechanical calculations, the exciting possibility of obtaining
accurate vibrational force fields for the whole molecules
appears realistic owing to the latest advances in quantum
chemistry.10-12 In the meantime, the Cartesian transfer tensor

techniques13 obtained spectroscopically accurate fields for
large molecules from quantum-chemical computations on
smaller fragments.3,14 In principle, such fragmentation ap-
proaches would enable calculation of the vibrational spectra
for arbitrarily large structures. However, for systems with
thousands of atoms a new problem arises: the force field
matrices become too large for direct diagonalization, which
is necessary to obtain the vibrational frequencies and
intensities. For such very large matrices special computa-
tional procedures have to be applied.11

Traditionally, the Householder transformation and the
following complete diagonalization routine based on the QL
or QR algorithm provide the fastest in-memory procedure
for the determination of the eigenvectors and eigenvalues
of a real symmetric matrix.15 Similar routines exist for a
partial diagonalization, yielding a given number of the lowest
or highest eigenvalues, but these algorithms are less efficient
except for cases when the number of the vectors of interest
is small.16 For matrices that cannot be stored in computer
memory or elements of which are created on the fly, the
power iteration methods appear as a better alternative.11,17

The eigenvalues and vectors are built from the smallest or
the largest value iteratively, using a limited number of trial
vectors (“Krylov space”).18 This is very convenient, for
example, for the configuration interaction electron computa-
tions, when only a limited number of the low energy
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electronic states (often just the ground state) is needed.
However, for the vibrational problem it is usually not
sufficient to find a few largest or smallest eigenvalues.
Rather, a complete spectrum, or at least a broad frequency
range, is desired, which is rarely limited to either the high
or low frequency side. For such a task the iterative (often
called Davidson) methods quickly become impractical. As
each new vector has to be normalized to the rest, the process
slows down progressively. Additionally, for semidegenerate
eigenvalues, the method can become numerically unstable.11

Fortunately, in some cases, the force field matrix diago-
nalization can be completely avoided by Fourier techniques
and time propagations of molecular properties. An interesting
alternative is offered by the normal mode tracking,19 where
the orthogonality of the harmonic normal modes is used to
construct an incomplete Hamiltonian, and, in a final effect,
a preselected part of the vibrational spectrum is obtained.
The decision as to which mode to follow has to be done
already at the ab initio stage of computation of the force
field, which somewhat limits possible applications. The
Fourier procedures pursued in the presented work were also
successfully used in the past, e.g. for generation of the
infrared absorption (IR) and optical activity (vibrational
circular dichroism, VCD) in connection with empirical12 or
ab initio20 based force fields. In this work, we investigate a
variant of these approaches which differs from the previous
schemes in that the time propagation is based directly on
the force field matrix instead of the harmonic Hamiltonian.
The spectra are not collected in a real frequency (ω) space,
but in the space of the force field eigenvalues λ (λ)ω2).
This approach brings a tremendous simplification of the
process, because it eliminates the problems associated with
molecular dynamics, such as the temperature definition,
normal mode energy-redistribution,20 and the need to hold
the large force field matrix in memory. For giant molecules
this method yields accurate relative absorption and VCD
intensities and the exact IR/VCD ratio in a fraction of
computer time needed for the direct diagonalization routines.
The principal drawback is that the exact relative intensity
distribution is somewhat dependent on the initial guess, but
this can be circumvented by averaging of more trajectories.
While the absolute intensities retain a small amount of error,
this does not represent a major problem in the practical
applications.

In this report, we briefly review the process of generating
the theoretical IR and VCD spectra within the harmonic
approximation. Most of the Method section is devoted to
the detailed description of the new algorithm. Finally, the
numerical stability and convergence tests and comparisons
with other diagonalization methods for model polypeptide
IR and VCD spectra simulations are presented and discussed.

2. The Method

Vibrational Analysis. In the harmonic approximation21

the vibrational Hamiltonian can be written in terms of nuclear
momenta Pi and displacements from equilibrium positions
of N atoms ∆Ri (i ) 1..N) as

H) 1
2(∑

i)1

3N Pi
2

Mi
+∑

i)1

3N

∑
j)1

3N

Fij∆Ri∆Rj)) 1
2

(pt·p + qt · f · q)

(1)

where Mi are nuclear masses, pi ) Pi/(Mi)1/2 qi ) (Mi)1/2 ∆Ri,
and fij ) Fij/(MiMj)1/2 are the respective mass-weighted
momenta, coordinates, and force field. The harmonic force
field (referred to also as the Hessian or Cartesian force
constant matrix) is formed by the second energy (ε) deriva-
tives

Fij )
∂

2ε
∂Ri ∂ Rj

(2)

The multidimensional problem is solved by a transformation
into the normal coordinates, Qk ) ∑j)1

3N skj
-1qj, and to

corresponding momenta Πk ) ∑j ) 1
3N skj

-1pj, so that st · s ) E,
where E is the identity matrix and the transformed force field
becomes diagonal

ski fkl
sij )ωi

2δij (3)

where δij is the Kronecker symbol (δij ) 1 for i ) j, δij )
0 for i * j), and ωi are the normal mode angular frequencies.
The vibrational Hamiltonian then becomes a sum of one-
dimensional harmonic oscillator Hamiltonians hi

H) 1
2∑i)1

3N

(Πi
2 +ωi

2Qi
2))∑

i)1

3N

hi(Qi) (4)

Consequently, the equations of motion for the nuclei reduce
to a set of 3N uncoupled one-dimensional Schrödinger
equations, energies, and wave functions of which can be
obtained analytically.21 (Equation 4 comprises also the
translational and rotational modes not visible in the spec-
trum.) In particular, frequencies of the fundamental
vibrational bands are equal to ωi. Solving the vibrational
problem therefore reduces to the diagonalization of the force
field matrix f (eq 3).

The intensities of the absorption and VCD bands of a
fundamental transition 0fυ are proportional, respectively,
to the dipolar (D) and rotational (R) strength defined as D0υ

) µ0υ ·µυ0 and R0υ ) Im µ0υ ·mυ0, where µ0υ is the electric
and the m0υ is the magnetic transition dipole moment, υ )
1..3N. These are obtained as22

µ0υ ) ( p2ωυ
)1⁄2∑

i)1

3N

piSυi (5a)

mυ0 )-√2p3ωυ∑
i)1

3N

aiSυi (5b)

where pi is the atomic polar tensor (APT), and ai is the atomic
axial tensor (AAT) with Cartesian (�)x,y,z) components

pi� )
∂µ�

∂Ri
(6a)

ai� )
√-1Mi

2p

∂m�

∂Pi
(6b)

Sυi ) ∂Ri/∂Qυ ) sυi/�Mi is the direct (not mass-weighed)
Cartesian-normal mode transformation matrix, and p is the
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Planck constant.23 For calculation of the infrared absorption
and VCD intensities it is therefore necessary to compute the
derivatives of the molecular electric (µ) and magnetic (m)
dipole moments.

The Algorithm. As stated in the Introduction, for very
large molecules the direct or iterative procedures for finding
the eigenvalues and eigenfunctions of the force field matrix
f (eq 3) become impractical. An alternative means is to use
the force field matrix to propagate an arbitrary test vector in
time. The process is started by a generation of a random set
of M unit vectors σ1...σM at the Cartesian coordinate 3N-
dimensional space. These can be thought of as linear
combinations of the eigenvectors of the force field matrix,
σi ) ∑j)1

3N cijsj. Then we introduce time-dependent vectors σi(t)
) ∑jcijsjeiλjt. Note that t referred to as the fictitious “time”
has units of second2 (in this work corresponding atomic units
are used) since λj is not a frequency, but λj ) Λjj ) ωj

2.
Using eq 3 we get f�RsjR ) λjsj�, and the propagation of σi

can be approximated for small time intervals dt as

σi(t+ dt)= σi(t)+
dσi(t)

dt
dt+ 1

2

d2σi(t)

dt2
dt2 ) σi(t)+

∑
j

icijλjsje
iλjtdt+ σi

(2) ) σi(t)+ if.σi(t)dt+ σi
(2) (7)

In the current implementation the second-derivative correc-
tion σi

(2) is not calculated directly, as this would involve a
computationally impractical formation of the square matrix
f2. Instead, we use an approximate formula, σi

(2)(t) =
0.5(σj i(t-2dt) + σj i(t) - 2σj i(t-dt)), where σj i are the vectors
propagated according to eq 7 with finite time steps dt and
normalized afterward. The involvement of σ(2) appeared very
beneficial for the quality of the results by allowing for a
significant increase of dt. Only a minor influence of a third-
derivative correction introduced in a similar manner was
observed; therefore, the third derivative was not used by
default.

In principle, we can construct autocorrelation functions

Ci(t)) σi(t)·σi )∑
j

cij
2eiλjt (8)

and obtain the eigenvalues as peak positions of its Fourier
transform Ii(λ)

Ii(λ))∫Ci(t)e
-iλtdt)2π∑

j

cij
2δ(λj - λ))∑

j

Iij(λ) (9)

In a similar way, we can define M time-dependent electric
and magnetic dipole moments as

µi�(t))∑
j)1

3N

pj�σij(t) and mi�(t))∑
j)1

3N

aj�σij(t) (10)

with corresponding Fourier transforms

µi(λ))∫µi(t)e
-iλtdt and mi(λ))∫mi(t)e

-iλtdt (11)

For a finite-time propagation the δ-functions in (9) can
be thought of as finite-width peaks. In fact, in the actual
simulations the transforms (eq 11) were calculated for a
discrete set of vibrational frequencies ωi (ωi ) λi

2), typi-
cally spaced by 1 cm-1 from 100 to 4000 cm-1. Instead of

the usual fast Fourier transformation the Fourier sums (9.
11) were incremented at each step, which did not significantly
increase the total time but enabled to avoid storage of the
entire trajectory in computer memory. To avoid too narrow
peaks, at each time step the transforms were additionally
convoluted with a dispersion function in the form of either
Lorentzian, (2/π∆)/{1+[2(ω-ω0)/∆]2}, or Gaussian, 2(ln
(2))1/2exp {-[2(ln (2))1/2(ω-ω0)/∆]2}/(∆�π), peaks; ∆ is
the full width at half-maximum.

Performing the integration (11), from (8) and (10) we
obtain for the electric dipole µi(λ) ) 2π∑υciυ∑kpksυkδ(λυ-λ).
Thus for each resolved transition υ the integration of µi(λ)
would yield a spectral intensity proportional to the sum
∑kpksυk (cf. eq 5a). But the expansion coefficients ciυ are
unknown. They can in principle be obtained from eq 9, but
this is impractical as unrealistically long accumulation times
are required to resolve modes that are very close in
frequency. Instead, we use a numerically more stable
procedure and directly calculate the dipolar strengths aver-
aged over the M σ-vectors as

〈D(λ)〉 )M-1 ∑
i)1,M

Reµi(λ)·Reµi(λ)

) (2π)2M-1 ∑
i)1,M

∑
υ,υ’

〈ciυciυ’〉∑
k,k’

pk·pk’sυ’k’sυkδ(λυ - λ)δ(λυ’ - λ)

= (3N)-1K(2π)2M-1 ∑
i)1,M

∑
υ

∑
k,k’

pk·pk’sυk’sυkδ(λυ - λ) (12a)

where we multiplied the finite-width “δ-functions” as
δ(λυ-λ)*δ(λυ′-λ) ) Kδυυ′δ(λυ-λ), where K is a constant
dependent on the actual shape of δ. For the Gaussian shapes,
for example, K ) 1/(∆�2π), ∆ ) 2ωd, where d is the
bandwidth. For a random initial distribution of the coef-
ficients 〈ciυ

2〉 ) (3N)-1, where N is the number of atoms.
Analogously, we get for the rotational strength

〈R(λ)〉 )M-1 ∑
i)1,M

Re µi(λ)·Re mi(λ)= (3N)-1K(2π)2M-1 ×

∑
i)1,M

∑
υ

∑
k,k’

pk·ak’sυk’sυkδ(λυ - λ) (12b)

Thus, if we allow for a small inaccuracy of the absolute
intensity scale given by the variance of the peak shapes (“δ-
functions”, which may deviate from the Gaussian peaks),
we obtain precise relative absorption and circular dichroism
peak intensities with correct ABS/CD ratios from eqs
12a-b.

Matrix Storage. The storage of the Hessian matrix F
requires (3N)2 words of memory. Although this is usually a
minor problem for modern computers, the handling of the
matrix may still become impractical for systems with several
thousands of atoms. Moreover, because of the locality of
vibrational interactions,24 an overwhelming majority of the
matrix elements is negligible. Particularly if the force field
of a “big” molecule is constructed from smaller fragments,
as in the Cartesian tensor transfer (CCT) method,13 for linear
biopolymers (nucleic acids, peptides) only a diagonal-like
band of the matrix is formed, and the required amount of
memory scales linearly with N. Therefore, in the current
implementation, for each line l of the matrix we store only
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nl nonzero nonredundant elements Flk, k ) r1...rnl (using
Fij)Fji) and the corresponding row-indices ri. For conven-
ience, diagonal elements Fii are divided by two; then
multiplication of a vector A by F, B ) F.A, can be realized
by a simple algorithm when only one line of F at a time is
read from the disk and stored in computer memory:

1. Zero-out B, l ) 1.
2. Read-in l-line of F.
3. For all j∈ (r1...rnl), update Bj ) Bj + FljAl and Bl ) Bl

+ FljAj.
4. Increment l ) l + 1, if l < 3N go to 2.
The storage required for the atomic axial and polar tensors

cannot be reduced; however, this scales linearly with N and
thus does not limit computations of even considerably large
molecules.

Model Systems. The method was tested on model periodic
systems, the polyglycine peptide in an R-helical conforma-
tion, and a five-strand antiparallel �-sheet 5 × Ac-(Ala)12-
Me, shown in Figure 1. The periodicity facilitated the
construction of a reasonably accurate force field based on
ab initio computation of smaller fragments. For the R-helix
a peptide heptamer (containing 7 peptide bonds), Ac-[Gly]6-
Me, in the same conformation was subjected to the normal
mode optimization routine25 with modes within -300.300

cm-1 fixed. Thus the higher-frequency mode visible in the
spectra could be relaxed under a minimal change of the
geometry. Similarly for the �-sheet, a smaller 3 × Ac-(Ala)2-
Me fragment26 was used as a source of the force field and
the intensity tensors, the geometry of which was optimized
with fixed main chain torsion angles. The BPW91 level of
approximation27 and 6-31+G** (R-helix) and 6-31G** (�-
sheet) bases were used for the calculation with the aid of
the Gaussian program package.28 For the optimized geom-
etries, the harmonic force field and intensity tensors were
computed at the same level by Gaussian and transferred on
the polymer by the Cartesian tensor transfer techniques.13

3. Results and Discussion

Time Step Dependence. First we have investigated the
sensitivity of the method to the size of the integration time
step. Previous simulation of the vibrational spectra using
classical molecular dynamics trajectories revealed a signifi-
cant dependence of the Fourier-transformed frequencies on
the integration steps.20 This is true also for the current
method, as can be seen in Figure 2 where the dependence is
plotted for a low (carbonyl stretching) and high (N-H
stretching) frequency band of the (Gly)130 system. The “time”
variable, the force field, and the eigenvalues Λii are given
in atomic units; then we can obtain the angular frequency ω
(wavenumber) in cm-1 as ω ) 1302.8�Λii. We can see that
the dependence is much sharper for the N-H stretching band,
where the time step dt of 0.05 (au) introduces a huge error
of ∼200 cm-1. However, this can be easily fixed by keeping
the step small as with dt ∼0.01 an acceptable error is
obtained even for the higher-frequency band, while the
propagation gives virtually the exact value for the carbonyl
stretch. Note that harmonic frequencies of the higher-
frequency hydrogen stretching transitions computed by
quantum chemical methods are regularly by up to 10% larger
than the experimental transitions,29 which makes a 1%
inaccuracy (∼10-30 cm-1) in the vibrational frequencies
acceptable. Shorter steps are not desirable as they make the
computation unnecessarily longer.

Band Width Convergence. As pointed out in the Method
section, the consequence of the finite interval of time
propagation is that spectral peaks are not infinitely sharp but
have finite widths. Therefore, it is necessary to establish the
number of the time propagation steps needed to obtain
sufficiently narrow bands. The dependence of the absorption
and VCD spectra on the number of the propagation steps
plotted in Figure 3 reflects the obvious behavior of the
Fourier transformation where the peak width is inversely
proportional to the evolution time. However, as the square
of the frequency is transformed, we can observe that the
higher-frequency bands become narrower than the lower-
frequency ones. This is shown quantitatively in Figure 4,
where the spectral line widths for the CdO (1718 cm-1) and
N-H (3505 cm-1) stretching bands are plotted as functions
of the number of propagation steps. Needless to say, for any
given region of the spectrum, an arbitrarily narrow width
can be obtained by a sufficiently long simulation time.
Overall, already at the early stages of the propagation correct
relative absorption intensities are obtained. The converged

Figure 1. The model systems, variable-length polyglycine in
the R-helical conformation (top) and the 5-strand antiparallel
�-sheet with Ac-(Ala)12-Me strands (Ac)acetyl, Ala)alanine,
Me)methyl, bottom).

Figure 2. The dependence of the frequency on the integration
time step (fictitious time in atomic units, see text), for a N-H
stretching (high frequency - top) and CdO stretching (low
frequency -bottom) vibrational bands of Gly130.
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VCD shapes require a longer time; for example, the
conservative carbonyl stretching split-band at ∼1718 cm-1

stabilizes at ∼20000 steps. For a typical IR or VCD
experiment where the inhomogeneous band widths seldom
become smaller than ∼10 cm-1 a propagation with ∼20000

steps thus already provides the desired spectral shape in the
CdO stretching region.

Trial Vector Averaging. With a sufficiently small inte-
gration step the procedure yields the correct vibrational
frequencies. However, the spectral intensities resulting from
a particular propagation run differ as a consequence of the
randomly chosen initial vectors σi. To obtain a stable
solution, independent of the choice of the initial conditions,
it is necessary to average several such runs. The convergence
of the relative IR and VCD band intensities on the number
of the initial vectors σi is explored in Figure 5. An
instantaneous convolution with the Lorentzian bands was
performed during the simulation in order to achieve a
constant bandwidth of 10 cm-1. The resultant spectra of
(Gly)130 for M ) 1, 5, 10, and 50 are compared with the
exact result based on the direct Householder diagonalization.
While a randomly selected vector (M ) 1) provides
unrealistic relative intensities, even with some wrongly
predicted VCD signs, the spectral profile quickly stabilizes,
and for M ) 50 the spectra are practically indistinguishable
from the exact intensities. As explained above, the minor
underestimation of the absolute intensities can be explained

Figure 3. The dependence of the absorption (left) and VCD (right) spectra of Gly130 on the number of the propagation steps
(indicated in the left panel, for 50 average spectra).

Figure 4. The dependence of the full widths at half-maximum
of the two selected peaks, the N-H stretch (3505 cm-1) and
CdO stretch (1718 cm-1) in Gly130 on the number of the
propagation steps. Note, that the y-scale is logarithmic.

Figure 5. Absorption (left) and VCD (right) spectra simulated
(from top, for 2000 propagation points) for 1, 5, 10, and 50
random vector averages as compared to the exact results
obtained by the direct diagonalization (bottom traces), for
Gly130.

Figure 6. The dependence of the time (in seconds, on a
logarithmic scale) needed to diagonalize the force field matrix
on the number of atoms in the (Gly)N polymer. (Detailed
description of each method is given in the text.)
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by the approximation for the averaging and the δ-function
multiplication.

CPU Time Scaling. As the number of nonzero matrix
elements is approximately proportional to the number of
atoms N, and the matrix-vector multiplication in eq 7 required
for the propagation σi involves a number of multiplications
proportional to N2, we can expect practical scaling between
N1 and N2. This is confirmed by the time dependence on the
number of atoms for (Gly)K, K ) 28...0.642 plotted in Figure
6. The detailed scaling of the disk-based time-propagation
procedure is dependent on the disk fragmentation and
detailed memory management; therefore, two computers with
the same processors (“computer I and II” in the Figure 6,
AMD64 1 GHz) provided slightly different dependencies.
Curiously, a larger force field matrix can occasionally even
yield a shorter simulation time. We can see that the Fourier
method scales much more favorably than the other proce-
dures. For the comparison we used our own implementation

of the iteration (Davidson) method based on the Mitin’s
modification of the algorithm,26 while a standard code was
used for the direct (Householder) diagonalization, expanded
by the possibility of correcting the ab intio force fields for
the translational and rotational invariance.15 In Figure 6 we
can see that the complete Davidson diagonalization is faster
than the time propagation up to N∼500, and then the time
quickly grows to immeasurable values. The direct House-
holder diagonalization is more efficient up to N∼1500, which
can be somewhat improved by skipping the projection of
the zero-vibrational modes (rotations and translations) from
the force field. However, because of the intrinsic N3

dependence and huge memory requirements of the direct
method, the propagation in the fictitious time becomes the
only method usable for N > 3000.

Large Peptide Systems. We have applied the Hessian
propagation to simulations of the IR and VCD spectra for
the �-sheet poly alanine segment (660 atoms) and the poly

Figure 7. Absorption (left) and VCD (right) spectra of the 660 atom �-sheet simulated by the time propagation (FT, for M ) 100
and 1000 trial vectors) as compared to the exact results obtained by the direct diagonalization (bottom trace); the 5 cm-1 bandwidth
was used in the simulations.

Figure 8. Absorption (left) and VCD (right) spectra of the 14000 atom poly glycine R-helix simulated by the time propagation
(for M ) 100 and 1000 trial vectors, 8 h and 3.5 days of the computer time was needed, respectively) as compared to the exact
result obtained by the Davidson method (finished in 9 days and 15 h, only the CdO stretching was included). The spectra were
normalized to one amide, and 5 cm-1 bandwidth was used. For the Davidson method, positions of the dipolar and rotatory
strengths of individual CdO stretching transitions are indicated in the inset graphs.
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glycine R-helix containing 14000 atoms (Figure 1). The
absorption and VCD spectra for these two protein models
simulated for 20000 time steps are plotted in Figures 7 and
8. The �-sheet spectrum could be compared to that obtained
by the Householder diagonalization, while the reference
R-helical spectrum was calculated using a limited Davidson
diagonalization. The Davidson method provided 2000 vi-
brational CdO stretching mode frequencies, starting from
the highest value, when hydrogen masses were arbitrarily
increased to 10 g/mol, not to interfere with the carbonyl
vibrations. For both systems, we can see that the time
propagation method faithfully reproduces the relative IR
intensity and VCD sign patterns, although a relatively large
number of the trial vectors is needed for accurate results.
Particularly, for the R-helix, the 100-vector average (Figure
8, top) is not sufficient for the VCD simulation as it provides
a net positive signal instead of the split carbonyl band. The
results nicely confirm the ability of the IR and VCD
spectroscopies to distinguish various peptide and protein
secondary structures: the high-frequency IR carbonyl stretch
components (1660-1740 cm-1, Figure 8) and the associated
weak VCD signal are characteristic for the �-sheet forms,30

while a single IR carbonyl band and an intense, positive VCD
couplet (i.e., positive to negative, from low to high fre-
quency) correspond well to the experimental data from helix-
rich proteins.3

The absorption and VCD spectra of regular structures,
particularly the poly glycine R-helix, originate in a few
semidegenerate transitions. The positions of the most intense
peaks are shown in the insets in the bottom panels of Figure
8. Most of the intensities come from a frequency interval
about 0.5 cm-1 wide. As discussed previously, this ac-
cumulation of spectral intensities reflects the translational
symmetry of the structure and phonon-like delocalized
normal modes.5 Therefore, the propagation method is capable
of correctly reproducing the overall spectral shape arising
from the specific intensity distribution also among nearly
degenerate modes. However, the degeneracy of the CdO
stretching transitions requires a relatively large number of
the trial vectors (∼1000) to be averaged, which leads to
longer computational time.

Another limitation of the present approach is the restriction
to the harmonic force field, although diagonal anharmonic
effects and Fermi resonances might be important for many
spectroscopic phenomena.21,31 In general, the wave function
propagation and Fourier transformation of an autocorrelation
function is suitable for obtaining transition energies of any
Hamiltonian;32 the implementation for large molecules,
however, exceeds the scope of the present work.

4. Summary

The force-field mediated time propagation of trial vectors
proved to be a stable algorithm for the generation of
vibrational spectra. It can offer important computational
advantages over standard matrix diagonalization methods for
very large systems. The method yielded accurate IR and
VCD intensities for model systems, provided that the time
propagation was averaged over a sufficient number of the
trial initial vectors. As a drawback, the procedure provides

only approximate absolute spectral intensities. However, this
is seldom a problem in most applications, since the absolute
IR and VCD intensities are difficult to measure, and the
structural properties are deduced mostly from the spectral
shapes. Because of the modest computer time and memory
requirements the time propagation thus represents a conve-
nient means for modeling of vibrational properties of large
molecular systems.
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Abstract: Ab initio EOM-CCSD and SOPPA calculations with the Ahlrichs (qzp,qz2p) basis
set have been carried out to evaluate one-, two-, and three-bond spin-spin coupling constants
for molecules HmXdYHn and HmXtYHn for X, Y ) 13C, 15N, and 17O, and selected 19F-substituted
derivatives. In the great majority of cases, EOM-CCSD one-bond C-C, C-N, C-O, C-F, N-N,
N-O, and N-F coupling constants and three-bond F-F coupling constants are smaller in
absolute value than the corresponding SOPPA coupling constants, with the EOM-CCSD values
in better agreement with experimental data. SOPPA tends to significantly overestimate the
absolute values of large one- and three-bond couplings involving fluorine. The majority of two-
bond SOPPA coupling constants are in better agreement with experiment than EOM-CCSD,
although differences between EOM-CCSD and experimental values are not dramatic. A statistical
analysis of thirty EOM-CCSD and SOPPA coupling constants versus experimental coupling
constants demonstrates that better agreement with experiment is found when EOM-CCSD is
the computational method.

Introduction

In a previous paper,1 we reported a comparison between
computed spin-spin coupling constants obtained by two
different theoretical methods: the second-order polarization
propagator approximation (SOPPA) and the equation-of-
motion coupled cluster singles and doubles method (EOM-
CCSD). That study was carried out with the Ahlrichs
(qzp,qz2p) basis set on a series of molecules HmX-YHn,
for X-Y a single bond involving C, N, O, and F, as well as
a set of fluorine derivatives of these molecules for which
experimental spin-spin coupling constants were available.
Also included were the neutral hydrides NH3, H2O, and HF
and their protonated and deprotonated ions, as well as the

hydrogen-bonded complexes which could be formed from
these species. The methods chosen for investigation, EOM-
CCSD and SOPPA, explicitly treat electron correlation
effects, with EOM-CCSD providing a higher level of
treatment. However, the higher level treatment of correlation
effects makes EOM-CCSD significantly more expensive
computationally and limits it application to relatively small
systems and/or those with high computational symmetry. On
the other hand, SOPPA is much more tractable computa-
tionally. The question then is how well does SOPPA perform.

It was not surprising to find in ref 1 that for the neutral
molecules HmX-YHn and their F-substituted derivatives,
EOM-CCSD coupling constants were in better agreement
with experimental coupling constants than SOPPA, particular
for couplings involving fluorine, in which cases the SOPPA
data were significantly in error. However, SOPPA coupling
constants were consistent with EOM-CCSD coupling con-
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stants for some of the one-bond couplings and for the
hydrogen-bonded complexes. In the present paper, we report
an extension of our previous study to molecules HmXYHn

in which X and Y are doubly- (XdY) and triply bonded
(XtY) and selected F-substituted derivatives. These deriva-
tives have been included because of the availability of
experimental coupling constants and the discrepancies ob-
served in ref 1 between experimental and computed SOPPA
coupling constants involving F. In this paper we compare
computed EOM-CCSD and SOPPA coupling constants with
each other and with experimental data.

Methods

Molecular structures have been optimized at second-order
Møller-Plesset perturbation theory (MP2)2-5 with the
6-31+G(d,p) basis set.6-9 Vibrational frequencies have been
computed to establish that each structure is a local minimum
on its potential surface. These optimized geometries were
used for the calculation of coupling constants for the majority
of molecules. However, for molecules with experimentally
determined ground-state geometries10-15 and experimentally
measured coupling constants,16-21 the experimental ground-
state geometry was used in an effort to minimize the effect
of neglecting zero-point vibrational corrections.22 Although
the importance of zero-point vibrational corrections has been
demonstrated previously by others, imposing such corrections
does not always lead to better agreement with experiment.
For example, in a previous study of FCCF,18 we demon-
strated that the three-bond F-F coupling constant was
extremely sensitive to geometry. Optimized geometries even
at CCSD(T)/aug-cc-pVTZ had C-C and C-F distances that
were too long and absolute values of 3J(F-F) which were
significantly greater than the experimental value of this
coupling constant. Imposing zero-point corrections increased
these distances and led to even larger discrepancies. It was
only when the experimental geometry of FCCF was used
that computed values of 3J(F-F) at both levels of theory
approached the experimental value, with the absolute value
of the EOM-CCSD coupling constant in very good agreement
with experiment.

Spin-spin coupling constants involving 13C, 15N, 17O, and
19F were computed using the second-order polarization
propagator approximation (SOPPA)23-27 and the equation-
of-motion coupled cluster singles and doubles (EOM-CCSD)
method in the CI(configuration interaction)-like approxima-
tion,28,29 with all electrons correlated. Both of these methods
explicitly include electron correlation effects. For these
calculations, only one basis set has been employed, namely,
the Ahlrichs30 qzp basis set for 13C, 15N, 17O, and 19F atoms
and the qz2p basis set for 1H atoms. Thus, the levels of theory
may be represented as EOM-CCSD/(qzp,qz2p) and SOPPA/
(qzp,qz2p). Coupling constants have not been evaluated at
SOPPA(CCSD),23,31 a method in which the MP2 amplitudes
are replaced by CCSD amplitudes. In ref 1 it was observed
that SOPPA significantly overestimates the absolute values
of 1J(O-F) for FOF and FOOF. These coupling constants
increase in absolute value at SOPPA(CCSD) and are further
removed from the EOM-CCSD and experimental values.

In the Ramsey approximation, the total coupling constant
(J) is a sum of four contributions: the paramagnetic spin-orbit
(PSO), diamagnetic spin-orbit (DSO), Fermi-contact (FC),
and spin-dipole (SD). All terms have been computed for all
molecules. Geometry optimizations were carried out with
the Gaussian 03 suite of programs.32 SOPPA calculations
were performed using Dalton-233 on the IQM computers,
and the EOM-CCSD calculations were done with ACES II34

on the Itanium Cluster at the Ohio Supercomputer Center.

Results and Discussion

Table 1 presents computed SOPPA and EOM-CCSD
spin-spin coupling constants, along with the available
experimental data. The components of J can be found in
Tables S1 and S2 of the Supporting Information. Listed first
in Table 1 are molecules with triple bonds, beginning with
HCtCH and its F-substituted derivatives, followed by
molecules with CtN bonds, and then CtO and NtN.
Molecules with double bonds are arranged starting with
H2CdCH2 and its derivatives, followed by molecules with
CdN, CdO, NdN, and NdO double bonds. Three mol-
ecules originally included in this list (HNdO and cis and
trans HNdNH) have been removed because of large t2

amplitudes of 0.15, which are indicative of the inadequacy
of a single-reference treatment. The last three entries in Table
1 are the cumulenes, H2CdCdCH2, H2CdCdNH, and
H2CdCdO.

One-Bond Coupling Constants. Table 1 shows that the
computed SOPPA and EOM-CCSD 1-bond C-C coupling
constants are always positive and usually similar, with the
SOPPA coupling constants greater than EOM-CCSD.
1J(C-C) has been determined experimentally for only 3
molecules included in this study, HCCH, H2CCH2, and
H2CCCH2. For each of these, the computed values overes-
timate the experimental, although the EOM-CCSD coupling
constants are closer to experiment. Both EOM-CCSD and
SOPPA overestimate 1J(C-C) for coupling across the C-C
triple bond, with computed values of 198.6 and 194.9 Hz,
respectively, compared to the experimental gas-phase value
of 174.8 Hz.21 Unfortunately, experimental 1J(C-C) values
for FCCH and FCCF are not available. However, both
methods predict that F-substitution would significantly
increase 1J(C-C) for FCCH (288.5 and 281.0 at SOPPA and
EOM-CCSD, respectively) and for FCCF (430.2 and 417.5
Hz, respectively).

SOPPA and EOM-CCSD values of 1J(C-N) are similar,
relatively small, and may be positive or negative. 1J(C-O)
is always positive, while 1J(N-N) and 1J(N-O) are negative.
The absolute values of the SOPPA coupling constants are
greater than the corresponding EOM-CCSD coupling con-
stants, with the EOM-CCSD values in better agreement with
available experimental data. Since the magnetogyric ratios
of 13C and 19F are positive while those of 15N and 17O are
negative, the reduced one-bond coupling constants 1K(C-O),
1K (N-N), and 1K(N-O) are negative and thus in violation
of the Dirac Vector Model.35

What makes 1K(C-O), 1K(N-N), and 1K(N-O) negative?
From Tables S1 and S2 it can be seen that all 1J(C-O) are
positive because both the PSO and FC terms are positive.
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Similarly, 1J(N-N) for N2 and trans FNNF and 1J(N-O)
for FNO are negative because both PSO and FC terms are
negative. The only molecule that does not fit this pattern is
cis FNNF, in which case the PSO term is relatively small
and negative, and the FC and SD terms are small but positive.

1J(N-N) for cis FNNF has opposite signs at SOPPA and
EOM-CCSD, but its absolute value is less than 1 Hz.

In the set of molecules included in this study, there are
12 one-bond C-F coupling constants and 5 one-bond N-F
coupling constants. All one-bond C-F coupling constants

Table 1. SOPPA, EOM-CCSD, and Experimental Spin-Spin Coupling Constants J (Hz)a

molecule nJ(X-Y) SOPPA EOM-CCSD exptl

Molecules with Triple Bonds
1 HCtCHb 1J(C-C) 198.6 194.9 174.8c

2 FCtCH 1J(C-C) 288.5 281.0
1J(C-F) -363.2 -323.2

3 FCtCFd 1J(C-C) 430.2 417.5
1J(C-F) -318.3 -277.7 -287.3e

2J(C-F) 37.9 40.2 28.7f

3J(F-F) -9.5 1.4 2.1e

4 HCtN 1J(C-N) -9.7 -12.6
5 H3CCtNg 1J(C-N) -13.5 -16.6 -17.5h

6 FCtN 1J(C-N) 13.3 5.9
1J(C-F) -515.8 -465.9

7 CtOb 1J(C-O) 23.1 18.6 16.4i

8 NtNb 1J(N-N) -4.8 -3.1 -1.8j

Molecules with Double Bonds
9 H2CdCH2

g 1J(C-C) 75.0 71.1 67.2k

10 F2CdCH2
l 1J(C-C) 123.7 119.7

1J(C-F) -319.0 -290.2 -287m

2J(F-F) 24.1 45.3 32.7n

11 FHCdCHF ciso 1J(C-C) 109.7 105.0
1J(C-F) -283.1 -259.4
2J(C-F) 14.1 8.4 5.9p

3J(F-F) -8.4 -15.1 -18.7q

12 FHCdCHF trans 1J(C-C) 123.1 117.2
1J(C-F) -271.6 -246.5
2J(C-F) 54.8 48.0
3J(F-F) -150.2 -137.6 -132.7q

13 F2CdCF2
o 1J(C-C) 210.5 204.3

1J(C-F) -302.1 -270.1
2J(C-F) 52.1 46.8
2J(F-F) 122.0 134.1 124q

3J(F-F) cis 86.7 67.6 73.3q

3J(F-F) trans -124.1 -115.2 -114q

14 H2CdNH 1J(C-N) -1.5 -1.9
15 F2CdNH 1J(C-N) -9.7 -11.6

1J(C-F) cis to H -398.1 -360.7
1J(C-F) trans to H -308.8 -278.3
2J(F-F) -88.7 -61.8 -54.6q

16 FHCdNF cis 1J(C-N) 2.3 3.9
1J(C-F) -382.7 -347.5
1J(N-F) 131.2 116.1
3J(F-F) -60.3 -49.3

17 FHCdNF trans 1J(C-N) 2.6 1.3
1J(C-F) -308.4 -277.7
1J(N-F) 114.0 99.6
3J(F-F) -247.6 -213.4

18 H2CdO 1J(C-O) 38.0 32.8
19 F2CdO 1J(C-O) 30.5 22.9

1J(C-F) -375.4 -337.1
2J(F-F) -165.2 -141.7

20 FNdNF ciso 1J(N-N) 0.93 -0.59
1J(N-F) 240.9 211.8 211.0r

2J(N-F) -19.3 -17.9 -25.4r

3J(F-F) -190.1 -128.8
21 FNdNF transs 1J(N-N) -20.7 -19.1

1J(N-F) 194.6 171.8 172.8r

2J(N-F) -58.7 -53.8 -62.8r

3J(F-F) -381.9 -307.1
22 FNdO 1J(N-O) -47.9 -38.5

1J(N-F) 131.7 84.2

Cumulenes
23 H2CdCdCH2

g 1J(C-C) 111.6 105.4 98.7t

24 H2CdCdNH 1J(C-C) 112.5 109.0
1J(C-N) -12.4 -14.5

25 H2CdCdO 1J(C-C) 110.7 110.3
1J(C-O) 30.3 23.2

a J for molecules with experimentally determined coupling constants were computed at experimental geometries, except for molecules 12
(HFCdCFH trans) and 15 (F2CdNH). b Reference 10. c Reference 21. d Reference 11. e Reference 17. f Reference 18. g Reference 12.
h Reference 16, p 375. i Reference 19, p 386. j Reference 19, p 274. k Reference 16, p 370. l Reference 13. m Reference 20, p 579.
n Reference 19, p 636. o Reference 14. p Reference 20, p 581. q Reference 19, p 646. r Reference 19, p 277. s Reference 15. t Reference
20, p 550.
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are negative, and all one-bond N-F coupling constants are
positive, which means that the reduced one-bond coupling
constants 1K(C-F) and 1K(N-F) are also negative and in
violation of the Dirac Vector Model. This is most likely a
consequence of the presence of lone pairs of electrons on
the coupled atoms.36 The bar graph of Figure 1 shows the
absolute values of SOPPA and EOM-CCSD 1J(C-F) (pairs
1-12) and the values of 1J(N-F) (pairs 13-17). The
numbers on the horizontal axis correspond to the molecule
numbers in Table 1. It is evident that there can be a
significant difference between coupling constants computed
at these two levels of theory, with the absolute values of the
SOPPA couplings always greater than EOM-CCSD. This
difference arises from the difference in the absolute values
of the FC terms, which are 20 to 50 Hz greater at SOPPA
compared to EOM-CCSD. One-bond C-F coupling con-
stants for molecules 3 (FCCF) and 10 (F2CCH2) and one-
bond N-F couplings for molecules 20 and 21 (“cis” and
“trans” FNNF) have been measured experimentally. The

EOM-CCSD values are in much better agreement with
experiment than the SOPPA values, which overestimate
1J(C-F) and 1J(N-F) in these molecules by 31, 22, 30, and
22 Hz, respectively. Figure 2 shows a plot of the SOPPA
and EOM-CCSD one-bond coupling constants versus the
experimental values. If the correlation between theory and
experiment were perfect, the trendline would have a slope
of 1.00, an intercept of 0.00 Hz, and a correlation coefficient
of 1.00. The equations of the trendlines in Figure 2 are

1J(SOPPA)) 1.12 *1J(exptl)+ 2.34 n) 10; R2 ) 1.000

1J(EOM-CCSD)) 1.01 *1J(exptl)+ 3.76 n) 10;

R2 ) 0.999

Both SOPPA and EOM-CCSD coupling constants cor-
relate linearly with experimental data. Although the intercept
of the SOPPA trendline is closer to 0.00 Hz, its greater slope
can be traced to the tendency of SOPPA to overestimate the
absolute values of the large one-bond C-F and N-F

Figure 1. SOPPA and EOM-CCSD one-bond coupling constants. The numbers on the x-axis correspond to the molecule numbers
in Table 1. The first 12 pairs of bars are the absolute values of 1J(C-F); the remaining 5 pairs are 1J(N-F).

Figure 2. EOM-CCSD (9) and SOPPA (() one-bond coupling constants 1J(X-Y) plotted against the experimental values.
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coupling constants. The slope of the EOM-CCSD trendline
is very close to 1.00, which means that EOM-CCSD gives
better agreement with experiment over the entire range of
coupling constant values.

Three-Bond F-F Coupling Constants. The only three-
bond couplings included in this study are F-F couplings.
Figure 3 presents a bar graph showing the nine three-bond
SOPPA and EOM-CCSD F-F coupling constants. 3J(F-F)
for 3 (FCCF) and 11 (cis HFCdCFH) are relatively small,
with the absolute value of the SOPPA F-F coupling for 11
less than the EOM-CCSD value, but the EOM-CCSD
coupling constants for both 3 and 11 are in better agreement
with experiment. These small couplings result from compet-
ing contributions from negative PSO terms and positive FC
and SD terms, as can be seen in Table S1. In a previous
study,18 it was shown that 3J(F-F) for FCCF (3) is extremely
sensitive to both C-C and C-F distances, and only at the
experimental geometry do the computed EOM-CCSD and
SOPPA coupling constants approach the experimental value.

Only 3J(F-F) for cis F-F coupling in molecule 13
(F2CCF2) is positive, in which case the PSO and SD terms
are both positive and the major contributors to J. The
remaining six couplings are negative and dominated by large
negative PSO terms. The absolute values of the SOPPA
coupling constants are greater than the corresponding EOM-
CCSD coupling constants, a reflection of the larger PSO
terms. This difference is dramatic for F-F coupling in cis
and trans FNNF (20 and 21). Experimental coupling
constants are available for three of these seven molecules,
and, in each case, the EOM-CCSD value is in better
agreement with experiment, with SOPPA overestimating the
experimental values by 18, 13, and 10 Hz, respectively, for
12 (“trans” FHCdCHF) and for “cis” and “trans” F-F
couplings in 13 (F2CCF2).

Figure 4 presents plots of SOPPA and EOM-CCSD three-
bond coupling constants 3J(F-F) versus the experimental
coupling constants. The equations of the trendlines are

3J(SOPPA)) 1.13 *3J(exptl)+ 1.66 n) 5; R2 ) 0.991

3J(EOM-CCSD)) 1.00 *3J(exptl) – 1.83 n) 5;R2 ) 0.998

Once again, the slope of the EOM-CCSD trendline is
significantly better than that of the SOPPA trendline.

Two-Bond X-F Coupling Constants. From the above
analysis and ref 1, it is apparent that one- and three-bond
SOPPA coupling constants in molecules with single, double,
and triple bonds tend to have greater absolute values than
EOM-CCSD coupling constants, with the latter in overall
better agreement with experiment data, particularly for
couplings involving F. However, the two-bond coupling
constants do not fit this pattern. Figure 5 presents bar graphs
comparing the EOM-CCSD and SOPPA values. The first 4
pairs are 2J(C-F); pairs 5-8 are 2J(F-F); and the remaining
two are 2J(N-F). It is apparent from Figure 5 that SOPPA
and EOM-CCSD 2J(C-F) and 2J(N-F) values are quite
similar. Nevertheless, the SOPPA values for molecules 3,
20, and 21 are closer to experiment than the EOM-CCSD
values. Both SOPPA and EOM-CCSD overestimate 2J(C-F)
for FCCF by 9 and 12 Hz, respectively. Both underestimate
the absolute values of 2J(N-F) for “cis” FNNF by 6 and 8
Hz and for “trans” FNNF by 4 and 9 Hz, respectively. In
contrast, EOM-CCSD overestimates 2J(C-F) for “cis”
FHCdCHF by only 3 Hz, while SOPPA overestimates it
by 8 Hz.

The data for 2J(F-F) do not fit a simple pattern. It is
interesting to note that both levels of theory predict that
2J(F-F) is positive for F2CdCH2 and F2CdCF2 but negative
for F2CdNH and F2CdO. This suggests that the sign of this
two-bond coupling constant is influenced by whether or not
the double bond is homonuclear or heteronuclear. That is,
the presence of lone pairs of electrons on the remote atom
of the double bond strongly influences the two-bond F-F
coupling of the fluorines bonded to C. When 2J(F-F) is
positive, either PSO, FC, and SD terms are all positive
(F2CdCF2), or positive FC and SD terms dominate the
negative PSO term (F2CdCH2). For these two couplings,
the EOM-CCSD values are greater than the SOPPA values,
with the SOPPA values closer to experiment. SOPPA
underestimates 2J(F-F) for F2CdCH2 and F2CdCF2 by 9
and 2 Hz, respectively, while EOM-CCSD overestimates the
experimental values by 13 and 10 Hz, respectively. In
contrast, 2J(F-F) values are negative for F2CdNH and
F2CdO and are dominated by very large and negative PSO
terms. The absolute values of the SOPPA coupling constants
are greater than the EOM-CCSD. Only 2J(F-F) for F2CdNH
has been measured experimentally, and while EOM-CCSD
overestimates its absolute value by 7 Hz, SOPPA overesti-
mates it significantly by 34 Hz. Thus, while 5 of 7 SOPPA
two-bond X-F coupling constants are in better agreement
with experiment than EOM-CCSD, the differences between
these two methods are relatively small except for F2CdNH.
This exception has a dramatic effect on the relationship
between computed and experimental two-bond coupling
constants, as illustrated in Figure 6. The equations of the
trendlines are

2J(SOPPA)) 1.055 *2J(exptl)- 2.82 n) 7; R2 ) 0.954
2J(EOM-CCSD)) 1.054 *2J(exptl)+ 6.20 n) 7;

R2 ) 0.992

Thus, the two trendlines are parallel, and the intercept for
the SOPPA data is closer to 0.0 Hz. However, as evident
from Figure 6, the SOPPA point for F2CdNH lies far from

Figure 3. SOPPA and EOM-CCSD three-bond F-F coupling
constants 3J(F-F).
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the trendline and is responsible for the decrease in the
correlation coefficient. Can this difference be attributed at
least in part to the use of an optimized rather than an
experimental geometry for this molecule? Why these two-

bond coupling constants behave so differently is a subject
for future study.

Statistical Analysis of One-, Two-, and Three-Bond
Couplings. Figure 7shows a plot of SOPPA and EOM-
CCSD coupling constants versus all of the experimental
coupling constants reported in Table 1 and also includes the
one-bond X-Y and X-F coupling constants from ref 1. It
is obvious from the trendlines shown in Figure 7 that both
SOPPA and EOM-CCSD coupling constants correlate lin-
early with the experimental coupling constants. The equations
of the trendlines are

J(SOPPA)) (1.25( 0.04)* J(exptl)-(6.72( 6.59)

n) 30; R2 ) 0.970; RMS) 35.8 Hz

J(EOM-CCSD)) (1.02( 0.01)* J(exptl)+ (2.41( 1.84)

n) 30; R2 ) 0.996; RMS) 10.0 Hz

As judged by the slope, intercept, and correlation coef-
ficient, the agreement between theory and experiment is
better at EOM-CCSD/(qzp,qz2p) than at SOPPA/(qzp,qz2p).
The SOPPA coupling constant which lies farthest from the
trendline is 1J(F-O) for FOOF, which has a value of -690 Hz

Figure 4. EOM-CCSD (9) and SOPPA (() three-bond coupling constants 3J(F-F) plotted against the experimental values.

Figure 5. SOPPA and EOM-CCSD two-bond coupling
constants. The first 4 pairs are 2J(C-F); the next 4 are
2J(F-F); and the final 2 pairs are 2J(N-F).

Figure 6. EOM-CCSD (9) and SOPPA (() two-bond coupling constants 2J(X-F) plotted against the experimental values.
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and significantly overestimates the absolute value of the
experimental coupling constant, -424 Hz. The EOM-CCSD
value is -446 Hz. Removing this point significantly improves
the SOPPA statistics, but the slope of the trendline still remains
too high at 1.14. Once again, the greater slope for the SOPPA
trendline results from the tendency of SOPPA to overesti-
mate the absolute values of large one- and three-bond coupling
constants which involve fluorine. Although it would be possible
to present further statistics including percent errors and devia-
tions, these are not very useful given the large range of values
of coupling constants. For example, the percent error for
3J(F-F) for FCCF is 33 and 352% at EOM-CCSD and SOPPA,
respectively, but the differences between computed and experi-
mental coupling constants are 0.7 and 7.4 Hz. On the other
hand, SOPPA overestimates 1J(C-F) for F2CdCH2 by 32 Hz,
but the percent error is only 11%.

In our comparison between theory with experiment, there
are some limitations in our treatment of the experimental
data which should be noted. For some molecules more than
one experimental value of a particular coupling constant has
been reported, and we have used that one judged to be the

most reliable. We have made no adjustments for uncertainties
in the experimental assignments or for reported error bars.
Finally, we have not taken into account the fact that the
experimental coupling constants have been measured under
different conditions, some in the gas phase and others in
solution, and no adjustments have been made to account for
possible interactions between the solute and the solvent.

Figure 8 presents a plot of SOPPA vs EOM-CCSD
coupling constants for all one-, two-, and three-bond X-Y,
X-F, and F-F couplings reported in this work and in ref 1.
The equations of the first- and second-order trendlines are

SOPPA) 1.15 * EOM - 5.73 n) 80; R2 ) 0.985

SOPPA)-0.0003 * EOM2 + 1.10 * EOM+ 1.60

n) 80; R2 ) 0.989

Although the quadratic term has only a very small coefficient,
this term becomes significant for large coupling constants
and introduces curvature into the relationship between
computed SOPPA and EOM-CCSD coupling constants. It

Figure 7. EOM-CCSD (9) and SOPPA (() one-, two-, and three-bond X-Y coupling constants plotted against the experimental
values.

Figure 8. SOPPA vs EOM-CCSD one-, two-, and three-bond coupling constants showing first-order (green) and second-order
(blue) trendlines.
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reflects primarily the tendency of SOPPA to over-
estimate large coupling constants involving F.

Conclusions

Ab initio EOM-CCSD/(qzp,qz2p) and SOPPA/(qzp/qz2p)
calculations have been carried out to evaluate one-, two-,
and three-bond coupling constants for molecules HmXdYHn

and HmXtYHn for X, Y ) 13C, 15N, and 17O and selected
19F-substituted derivatives. The results of these calculations
support the following statements.

1. 1J(C-C) are always positive at the two levels of theory,
whereas 1J(C-N) are relatively small and either positive or
negative. SOPPA and EOM-CCSD coupling constants are
similar. One-bond coupling constants 1J(C-O) are always
positive, whereas 1J(N-N) and 1J(N-O) are negative, in
violation of the Dirac Vector Model which states that reduced
one-bond coupling constants are positive. The EOM-CCSD
coupling constants are usually in better agreement with
experiment.

2. All one-bond C-F coupling constants are negative, and
all one-bond N-F coupling constants are positive, once again
violating the Dirac Vector Model. The absolute values of
the SOPPA coupling constants are greater than the EOM-
CCSD values, with the latter in better agreement with
experimental data. As observed previously, SOPPA tends
to overestimate the absolute values of large one-bond coup-
lings involving 19F.

3. Three-bond coupling constants 3J(F-F) are usually
larger in absolute value when evaluated at SOPPA compared
to EOM-CCSD, a result of larger contributions from the PSO
terms. In all cases, the three-bond EOM-CCSD coupling
constants are in better agreement with experimental data.

4. There is no simple identifiable pattern for the relation-
ship between SOPPA and EOM-CCSD two-bond coupling
constants. For the majority of these, SOPPA is in better
agreement with experiment, although the differences between
the computed EOM-CCSD values and experimental values
are not dramatic. However, SOPPA significantly overesti-
mates the absolute value of 2J(F-F) for F2CdNH.

5. A statistical analysis of 30 EOM-CCSD/(qzp/qz2p) and
SOPPA/(qzp,qz2p) coupling constants versus experimental
one-, two-, and three-bond coupling constants demonstrates
that better agreement with experiment is found when EOM-
CCSD is used as the computational method.

It is well-known that the performance of any given method
for the calculation of coupling constants depends on the
quality of the method, the geometry, and the basis set used
for the calculations. Since SOPPA does give reasonable
values for many coupling constants, a question for future
study is whether the performance of SOPPA can be sys-
tematically improved, particularly for couplings involving
fluorine, if a different basis set were used for the calculations.
Some studies of the basis sets used for SOPPA calculations
have been reported.23,36a,37 A systematic basis-set dependence
investigation of the SOPPA coupling constants presented in
this paper which identified an optimal basis set would be of
immense value, allowing this method to be applied with
confidence to much larger molecules of interest to both
theorists and experimentalists.
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Abstract: Dissociative electron attachment (DEA) to formamide (HCONH2), the smallest
molecule with a peptide bond, is investigated with electron-molecule scattering calculations. At
the equilibrium geometry we identify two resonances of A′′ and A′ symmetry at 3.77 and 14.90
eV, respectively. To further assess potential bond-breaking pathways for the transient negative
ions (TNIs), the behavior of the resonances upon bond stretching of the C-H and C-N bond
is investigated. While along the C-H dissociation coordinate neither resonance changes
significantly, we find instead that both resonances are stabilized upon stretching the peptide
C-N bond, with their resonance energy and width coming down rapidly, most strongly so for
the A′ resonance. The A′ resonance is thus seen to disappear when the C-N bond is stretched
for more than 1 Å, where it presumably smoothly connects to a bound anion state, a direct DEA
pathway for the A′ TNI to yield NH2

- and HCO. The A′′ resonance is found instead not to be
purely dissociative along the C-N coordinate but to evolve into forming a low-lying resonance
on the NH2 fragment. Furthermore, symmetry considerations dictate here that the incoming
electron attaches itself to an orbital of A′ symmetry of the NH2

- and HCO asymptotic fragments.
Therefore, DEA from the A′′ TNI has to occur via a symmetry-breaking, nonadiabatic curve
crossing which connects to the purely dissociative A′ metastable anionic state that is coming
down in energy as the bond stretching occurs.

1. Introduction

The chemistry of low-energy electrons (LEEs) is currently
actively investigated in view of its important role in
radiation-induced damage to biomolecules1-14 and in the
processing of interstellar ices by cosmic rays.15-23 The
primary ionizing events are known to generate large
amount of secondary electrons in the range of 0-20 eV24

which can then resonantly attach themselves to molecular

targets and yield formation of transient negative ions
(TNIs). The energized TNI, in turn, could either evolve
by autodetaching the extra electron or could dispose of
the excess energy within its molecular framework, a path
which may ultimately lead to rupture of a chemical bond
within the target: this process, yielding a stable anion and
a radical fragment, is known as dissociative electron
attachment (DEA). Here we study the resonances of
formamide and its potential DEA pathways by using
electron-molecule quantum scattering calculations. With
similar methods, DEA processes in glycine,11 uracil,3 and
formic acid4 have been studied, while quantum dynamics
coupled to quantum chemistry calculations have been used
to study DEA in the sugar-DNA backbone.5
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Formamide is the smallest molecule with a peptide bond
and has two resonance structures that give the C-N bond
partial double bond character with a planarized nitrogen
atom.25,26 Formamide is observed in the interstellar medium,
in star-forming regions27-31 and in the comet Hale-Bopp32

and has been suggested as a potential biological precursor
because it forms nucleobases in the present of oxides when
UV-irradiated33 or heated.34 The processing of pure thin-
film formamide ices has also been studied with low-energy
electrons35 and keV protons.36 From anion-desorption studies
of thin films of 1d-formamide on platinum Cloutier et al.
conclude that H- dissociates from the NH2-group from a
core-excited resonance (two-particle one-hole state) at ∼8
eV35 but have not studied how the ice itself is processed.
Brucato et al. report the formation of CO, CO2, N2O, HNCO,
and NH4

+OCN- from irradiation of thin films of formamide
on a silicon substrate with 200 keV protons,36 which pre-
sumably results from the interaction of secondary low-energy
electrons with the solid formamide.

Here we study the behavior of shape-resonances in gaseous
formamide upon the stretching of the H-N, C-H, and C-N
bonds to identify potential dissociative electron attachment
pathways in the title molecule and to unravel possible energy
deposition mechanisms.

2. The Computational Approach

The molecular quantum dynamical method we use in this
study has been described in much detail previously;37-39

therefore we give here only a short outline of it. The elastic
electron-molecule scattering process is described within the
fixed-nuclei approximation,38 and the antisymmetrized scat-
tering (electron + molecule) wave function is expanded from
the Hartree-Fock (HF) orbitals of the neutral ground-state
species, where the N electrons of the molecule target mai-
ntain their ground-state configuration during the scattering
process, i.e. no core-excited resonances are considered. The
scattering equations, orbitals, and potentials are expanded
in a set of symmetry-adapted angular functions around the
center of mass38,39 and over a numerical radial grid out to
the asymptotic region. The electron-molecule interaction
potential is modeled by replacing the exact nonlocal ex-
change potential by an energy-dependent local potential, the
Hara free-electron gas exchange,40 and the correlation po-
tential by the Perdew-Zunger potential.41 Inclusion of a
long-range polarization term changed very little the resonance
results at the equilibrium geometry of formamide (see section
3.1). This is an expected behavior11 since such transient state
formations are clearly dominated by short-range correlation
effects, and even more so when molecules with permanent
dipole moments are considered. We can thus simplify the
modeling of the interaction potential by neglecting the long-
range polarization term.

Geometry optimizations and the potential energies of the
neutral species along the bond-stretching coordinates have
been calculated at the B3LYP/6-311+G** level with
Gaussian03,42 while the HF/6-311+G** orbitals are used
for the scattering calculations. Elastic cross-sections and poles
of the S-matrix have been calculated within A′ and A′′
symmetry with the ePolyScat program,43 at the equilibrium

geometry and at geometries where one of the bonds was
stretched while all other bond lengths and angles have been
held fixed, thus providing a pseudo-one-dimensional picture
of the multidimensional Intramolecular Vibrational Redis-
tribution (IVR) process as triggered by the resonant electron
dynamics. For the S-matrix calculations we expanded the
wave function with a maximum angular momentum value
of 50, and a maximum of 14 partial waves was used for the
scattering electron expansion within the piecewise diabatic
representation. Increasing either values of the maximum
angular momentum had no significant effect on the final
results.

3. Scattering Results

3.1. Equilibrium Geometry. By searching for poles of
the S-matrix in the complex plane, we find that, at the
equilibrium geometry, two shape-resonances are deemed to
be physically realistic, one for each symmetry. The A′
resonance is at 14.90 eV and is very broad (with a hwhm of
2.08 eV), while the lower-lying A′′ resonance (3.77 eV) is
much narrower (hwhm 0.52 eV). As in ref 11, also in the
present case we checked the validity of our assumption
concerning the negligibility of the long-range polarizability
effects on the resonances’ parameters. Hence, we repeated
the calculations for the A′′ resonance at the equilibrium
geometry by including the long-range part of the electron-
molecule interaction. The spherical polarizability of the
formamide employed in our calculations (25.30 Bohr3) was
calculated at the same level of theory used to describe the
ground-state of the neutral target (i.e., B3LYP/6311+G**)
and produced a value for the position of the π* resonance
shifted to higher energies by 0.008 eV. Such negligible shift
confirms, once again, the validity of our assumption regard-
ing the nature of the scattering potential which is responsible
of the formation of transient anions. Hence, all the calcula-
tions at different nuclear geometries, discussed in the
following section, do not include the long-range polarization
interaction.

Our calculated A′′ resonance is almost 2 eV higher in
energy than the one resonant feature determined by electron
transmission spectroscopy (2.05 eV, fwhm 0.82 eV).44 This
discrepancy is most likely due to uncertainties in the mea-
surements as well as inaccuracies in our calculations (fixed-
nuclei approximation, model exchange interaction, localized
correlation effects). Analysis of the piecewise adiabatic
potential shows that the incoming electron is trapped by an
l ) 2 centrifugal barrier in the A′′ resonance and is therefore
classified as a d π-resonance. The resonant wave function
(depicted in Figure 1) has a nodal plane between the C-N
and C-H bonds, which suggest possible cleavage of these
bonds as a potential dissociative electron attachment path-
way.37 Because Cloutier et al. observe H- fragments from
the NH2 group upon low-energy electron impact, we also
consider N-H rupture, even though this process was there
surmised to stem from a core-excited resonance without any
further support for its occurrence and could also be heavily
influenced by the metal substrate as well as other solid-state
effects.35 The corresponding spatial depiction of the broader
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A′ resonance at higher energies (around 14 eV) is reported
in Figure 2. We see there again the presence of an
antibonding plane across the C-N bond and the additional
presence of extra-electron densities above and below the C
and the N atoms.

3.2. Stretching of the C-H and N-H Bonds. We
carried out additional calculations, not reported here for the
sake of brevity, which clearly showed that neither of the
shape resonances changes much its location and width when
either of the N-H bonds is stretched. More precisely, both
resonances move slightly higher in energy, which excludes
N-H bond stretching as a favorable pathway for transferring
the excess energy of the TNI into the nuclear network. These
results are in agreement with the proposal that the resonance
at 8 eV giving rise to DEA by N-H bond rupture is not
originating from a shape resonance but probably from some

other mechanism.35 On the other hand, upon stretching of
the C-H bond both the A′ and A′′ resonances decrease very
gradually in energy (∼0.1 eV per 0.1 Å) when the bond is
stretched beyond 0.1 Å. The energy is here with respect to
the neutral species electronic energy taken to be the reference
value. However, since the potential energy curve for the
neutral species (see Figure 3) increases much more steeply
than the actual resonance energy component decreases, C-H
bond breaking is also surmised to be an unfavorable pathway
for DEA processes which originate from the present shape
resonances as intermediate anionic states: the overall anion
electronic energy, in fact, increases as that bond is stretched.

3.3. Stretching of the C-N Bonds. Our further calcula-
tions clearly show, however, that both A′ and A′′ resonances
are stabilized by the stretching of the central peptide bond.
They quickly, and consistently, become lower in energy and
more sharp (i.e., longer-lived) when the C-N bond is
stretched from the equilibrium value of 1.306 Å, while
compressing the C-N bond renders the resonances higher
in energy and less stable, thereby making the electron-
detachment path more likely to occur before energy redis-
tribution within the nuclear network. To investigate the
plausibility of C-N bond breaking as a potential pathway
for DEA evolution of the TNIs, we followed the poles of
the resonances until they disappeared, indicating formation
of a stable anion. In Figure 3, we plot the energies of the
neutral species and the A′ and A′′ TNIs along the C-N
stretching coordinate. The energies of the TNIs at every
geometry are calculated as the sum of the neutral species
(at the B3LYP/6-311+G** level) and the resonance energy:

ETNI(R))Eres(R)+Eneutral(R) - E(Req) (1)

We see in the figure that the higher-energy A′ resonance
gets stabilized much more markedly as we stretch the bond
than does the A′′ resonance, a finding which makes the C-N
stretching deformation a very efficient process for the transfer
of the excess energy of the resonantly attached A′ electron
(14.9 eV) into the resulting fragments, although the short-
lived TNI still has to compete with flux-losses into the
electron autodetachment channel. When the C-N bond is

Figure 1. Mesh representation of A′′ resonant wave function
at the formamide equilibrium geometry.

Figure 2. Mesh representation of A′ resonant wave function
at the formamide equilibrium geometry.

Figure 3. Electronic energy changes of formamide for the
neutral and the two TNIs resonant states along the C-N
stretching coordinate.
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stretched by 0.8 Åout to 2.106 Å, the A′ resonance (0.64
eV, hwhm 0.27 eV) has even become lower in energy than
the A′′ resonance (0.74 eV, hwhm 0.02 eV). Further
stretching leads to a disappearance of the A′ resonance which
indicates the formation of a stable anion. This feature is
indicated in our calculations by the fact that the pole of the
Scattering Matrix (S-matrix) locating the resonance now
moves on the negative branch of the real energy axis and
very close to it. Indeed we see in the figure that, when
looking at the B3LYP/6-311+G** level of calculations for
the neutral species reported by diamonds in the figure, the
anion of A′ symmetry would proceed to become more stable
than the neutral species when the C-N bond is stretched
beyond 2.2 Å. We also find that the excess electron gets
localized on the NH2 fragment, indicating HCO + NH2

- as
the likely DEA pathway of fragmentation. To obtain the
actual crossing in Figure 3, however, we would need
additional, separate calculations of the new bound (N+1)
electron system within that range of geometries using
conventional quantum chemistry codes, a test which is
outside the scope of the present work and would not add to
our analysis of the DEA processes as stabilizing mechanisms
for resonant states.

One should further note here that, while the A′′ resonance
gets also stabilized by C-N bond stretching, it does not
disappear now into a bound state of the (N+1) electrons
system for large C-N distances but rather evolves into a
low-energy resonant state that localizes the excess electron
onto the NH2 fragment. Because the excess electron has to
attach itself to an orbital of A′ symmetry in the asymptotic
HCO + NH2

- channel, we see that the A′′ TNI does not give
rise to a direct DEA process: instead the existing TNI has
to couple to the now nearby, fully dissociative A′ potential
curve by symmetry-breaking (e.g., pyramidalization of the
NH2 group) in order to further proceed along a dissociative
pathway. Our present calculations show that the two TNI
curves are now crossing each other around 2.15 Å (Figure
3) at an energy of ∼4.3 eV above the ground-state energy
of the neutral formamide. Therefore our dynamical modeling
suggests here that for the 3.77 eV A′′ resonance to yield
HCO + NH2

- via an indirect DEA pathway it must cross
the A′ curve at a C-N distance of 2.15 Å, where the crossing
will occur with an energy of ∼0.5 eV in excess of the
resonance energy. Thus, the complex anion must therefore
undergo a multidimensional IVR rearrangement before
reaching the symmetry-breaking conical intersection that will
yield the NH2

- fragment.

4. Discussion

Using realistic quantum scattering calculations, we have
identified a direct (14.90 eV) and an indirect (3.77 eV) DEA
pathways which could be followed by the fragmentation of
gas phase formamide to yield HCO + NH2

-. Our calculations
also show that a dissociation of the H-C or the N-H bonds
constitutes an unfavorable process for both TNIs observed
in this system. The 3.77 eV shape resonance identified in
our scattering calculations turns out to be located at a higher
energy than the experimentally determined value of 2.05 eV
(electron transmission spectroscopy),44 which is an indication

that the true resonance is probably somewhere in between
and that the indirect DEA pathway is also likely to be un-
favored because of the sizable amount of excess energy
needed to reach the seam where the A′ and A′′ anion curves
cross and can therefore optimally undergo nonadiabatic
coupling.

Low-energy electron irradiation of thin films of solid 1d-
formamide has established that mainly H- anions desorb into
the gas phase, resulting from N-H bond dissociation from
a core-excited resonance around 8 eV.35 However, that ex-
periment would not detect any NH2

- fragments that would
have been formed by the shape-resonances around 3.8 and
15 eV and get trapped in the bulk since none of the products
in the processed ice is experimentally determined. Likewise,
our technique cannot be applied to identify possible core-
excited resonances so we cannot uniquely establish whether
or not the N-H formation is a plausible pathway for DEA
processes originating from 8 eV low-energy electrons.
Furthermore, since the solid matrix could considerably affect
the position of the resonances by altering the permittivity
and the geometries of the physisorbed species, and we have
shown here that a small stretching of the C-N bond could
already have a large effect on the position of the A′ resonance
(Figure 3), it is not at all clear that the feature around 8 eV
seen experimentally actually occurs from molecules in their
ground vibrational states and not from a lowering of the A′
resonance due to some vibrational excitation effect.

Brucato et al. have identified several new molecules
upon 200 keV proton irradiation of frozen formamide.36

Since both products that appear to stem from C-N rupture
(CO, CO2) and from N-H rupture (HNCO, OCN-) are
observed, it could be argued that the secondary low-energy
electrons generated in that process are actually producing
both DEA processes. A detailed gas phase scattering study
of formamide could shed more light on whether indeed
fragmentation paths to NH2

- + HCO take place from the
high-energy (15 eV) and low-energy (3.7 eV) shape-
resonances via the direct and indirect mechanisms which
our calculations suggest. It is, in any event, of interest to
have been able to argue purely from quantum calculations
the likely presence of two possible, and distinct, molecular
mechanisms that can lead to electron-induced fragmenta-
tion processes in gas phase formamide.
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Abstract: To highlight the role of the protein in metal enzyme catalysis, we optimize ONIOM
QM:MM transition states and intermediates for the full reaction of the nonheme iron enzyme
isopenicillin N synthase (IPNS). Optimizations of transition states in large protein systems are
possible using our new geometry optimizer with quadratic coupling between the QM and MM
regions [Vreven, T. et al. Mol. Phys. 2006, 104, 701-704]. To highlight the effect of the metal
center, results from the protein model are compared to results from an active site model
containing only the metal center and coordinating residues [Lundberg, M. et al. Biochemistry
2008, 47, 1031-1042]. The analysis suggests that the main catalytic effect comes from the
metal center, while the protein controls the reactivity to achieve high product specificity. As an
example, hydrophobic residues align the valine substrate radical in a favorable conformation
for thiazolidine ring closure and contribute to product selectivity and high stereospecificity. A
low-barrier pathway for �-lactam formation is found where the proton required for heterolytic
O-O bond cleavage comes directly from the valine N-H group of the substrate. The alternative
mechanism, where the proton in O-O bond cleavage initially comes from an iron water ligand,
can be disfavored by the electrostatic interactions with the surrounding protein. Explicit protein
effects on transition states are typically 1-6 kcal/mol in the present enzyme and can be
understood by considering whether the transition state involves large movements of the substrate
as well as whether it involves electron transfer.

1. Introduction

Transition-metal enzymes catalyze some of the most fun-
damental biochemical processes and can serve as inspiration
for novel biomimetic catalysts. From the latter perspective,
it is important to understand how the metal center and the
protein matrix separately contribute to the catalytic activity
of the enzyme system. A well-established approach to clarify
the catalytic power of enzymes is to compare rates for the
same reaction in enzyme and solution.1,2 This is not possible
for most transition-metal enzymes because their activity is

critically linked to the redox activity of the metal. An
alternative approach, employed in this investigation, is to
calculate reaction barriers in the protein environment and
directly compare these to barriers obtained without protein
environment and to experimental reaction rates.

In the present investigation, the catalytic mechanism of
the nonheme iron enzyme isopenicillin N synthase (IPNS)3,4

is analyzed using ONIOM(QM:MM), an integrated quantum
mechanics:molecular mechanics (QM:MM) method.5-8 In
the present QM:MM model, the metal center, i.e., iron, iron
ligands, and substrate, is treated by density-functional theory
(DFT), while the rest of the enzyme is treated by a classical
force field. The two-layer approach not only is computa-
tionally efficient but also makes it easier to separate effects
from the metal center from those of the surrounding protein
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because they are described at different computational levels.
To further highlight the effects of the protein, the ONIOM
results are compared to results from a study where the protein
was treated as a homogeneous dielectric medium (active-
site QM-only approach).9 QM/MM methods can be consid-
ered as extensions of the active-site approach as they
explicitly include the effects of the protein on geometry,
electronic structure, and energies.10

The most important feature of the investigation is the large
number of fully optimized transition states in QM:MM
models with several thousands of atoms. This is possible by
the use of an advanced optimization algorithm, the “fully
coupled macro/microiterative” optimization scheme.11 In this
method, the macroiteration of the “macro/microiteration”
scheme12 is modified by explicitly including the quadratic
coupling of the QM region with the MM region, which
significantly improves the geometry convergence for opti-
mization of transition states and avoids restrictions common
in standard schemes. The MM contributions to the Hessian
are described using analytical second derivatives of the MM
potentials. To avoid cubic scaling with system size, direct
and linear scaling (FMM) methods for the MM contributions
are used to make this step feasible. The same optimization
algorithm has previously been used to identify two transition
states in mammalian glutathione peroxidase (GPx)13 and a
transition state for homolysis of the Co-C bond in meth-
ylmalonyl-CoA mutase.14

The ability to locate transition states makes it possible to
see how the protein matrix affects the reaction coordinate
and to quantify the effects on reaction rates. Optimization
approaches are appropriate when there are no major changes
in protein structure but cannot describe major changes in
protein conformation. Still, optimized transition states give
the best estimate of the reaction coordinate and are ideal
starting points for calculations of enzymatic free energies,
using e.g., quantum mechanical thermodynamic cycle per-
turbation (QTCP)15 or QM/MM free-energy perturbation.16

Isopenicillin N synthase is a member of a family of
mononuclear nonheme iron enzymes with a 2-His-1-car-
boxylate iron-binding motif.17-19 It uses the four-electron
oxidative power of O2 to transform the tripeptide substrate
δ-(L-R-aminoadipoyl)-L-cysteinyl-D-valine (ACV) to isopeni-
cillin N (IPN). The proposed mechanism20 fits into a general
scheme for the oxygen-activated nonheme iron enzymes, with
initial formation of a ferryl-oxo [Fe(IV)dO] intermediate
that then acts as a powerful oxidant, see Scheme 1. The
reaction starts when dioxygen binds to the high-spin21 ferrous

iron, which gives a ferric superoxo species22 that activates
the cysteine �-C-H bond leading to formation of an iron-
bound peroxide.23 According to the proposal in ref 20, the
peroxide abstracts the valine N-H proton to generate the
ferryl-oxo and a water molecule. At the same time,
the nitrogen performs a nucleophilic attack on the cysteine
�-carbon, which leads to formation of the four-membered
�-lactam ring, see Scheme 2. This pathway, in the present
paper called the “substrate donor” mechanism, could not be
found in previous active-site modeling.9,24 In the alternative
“ligand donor” mechanism a water ligand provides the proton
required for O-O bond cleavage, and the ferryl-oxo is
formed before the �-lactam ring can close, see Scheme 2.9

In the ligand donor mechanism, �-lactam ring closure is
coupled to a separate proton transfer reaction from the
substrate to the iron water ligand. In total, this leads to the
same ferryl-oxo intermediate as in the substrate donor
mechanism, see Scheme 2. From this intermediate, the high-
valent iron species further oxidizes the substrate by activation
of the strong valine �-C-H bond. This reaction produces a
reactive substrate radical that attacks the thiolate, leading to
formation of the five-membered thiazolidine ring and the
completed IPN product, see Scheme 1. There are fully
synthetic routes to generate IPN,25 but the enzymatic reaction
is still used in large-scale production of antibiotics.26 A
detailed understanding of the enzyme-substrate interactions
can help to design biosynthetic routes for �-lactam antibiotics
of clinical importance.

Isopenicillin N synthase is a suitable target for QM/MM
investigations because X-ray structures have been collected
at different stages of the reaction, including the IPN product
and an analogue of the �-lactam intermediate.20,27 Indepen-
dent deuterium kinetic isotope effects for both the cysteine
�-carbon and the valine �-carbon suggest that both C-H
bond activation steps are at least partially rate-limiting,28

which gives two steps where the calculated barrier can be
compared to experiment.

2. Computational Details

Methods. In a two-layer ONIOM calculation5-8 the
system is divided into two parts, a selected model system
treated by a high-level (QM) method and the remainder
treated by a low-level method, often molecular mechanics
(MM). In this study the high-level method was the density
functional B3LYP,29,30 and the low-level method was the
Amber96 force field.31 The applicability of the ONIOM
(B3LYP:Amber) method has previously been illustrated for
several enzymatic systems.32-36 Geometries were optimized
at the 6-31G(d) level, and final energies were evaluated with
the 6-311+G(d,p) basis set.9 Differences between active-
site and ONIOM models come not only from the potential
energy but also from the dielectric continuum that was used
to approximate the protein in the active-site model but that
was not included in the ONIOM models. Zero-point and
thermal corrections were assumed to be similar between the
two approaches and were taken from fully optimized active-
site models.

Scheme 1. General Reaction for Isopenicillin N Synthase
Including the Proposed [Fe(IV)dO] Intermediatea

a R ) L-R-amino-δ-adipoyl.
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Calculations have been performed using a private develop-
ment version of Gaussian37 that includes the “fully coupled
macro/microiterative” optimization scheme described previ-
ously. The algorithm was initially implemented for the
mechanical embedding (ME) scheme, and all optimizations
have been performed with ONIOM-ME. Stationary points,
including transition states, are fully optimized using the
default convergence criteria, while transition state 57S has
all but the maximum displacement converged (details in the
Supporting Information). Transition states are characterized
by a single negative eigenvalue in the Hessian matrix.

In mechanical embedding, the electrostatic interactions
between the reactive region and the surrounding protein are
calculated classically. In the standard implementation the
point charges assigned to the reactive region are not
automatically updated. The present models use charges from
ESP (Merz-Kollman) calculations. Charges are calculated
for the first stationary point of each model, and the same
charges are then used in all optimizations with that model.
Details are given in the description of the model setup below.
Standard ONIOM-ME only includes electrostatic effects due
to geometrical changes but neglect the changes in the
electronic structure of the model system, e.g., on charge
transfer. A common alternative approach is to calcu-
late the electrostatic interactions semiclassically, i.e., to
incorporate the MM charges into the QM Hamiltonian
(electronic embedding or EE).8,38 The main advantage is that
QM/MM-EE includes the exact electrostatic interaction
between the electron density and the point charges in the
protein environment. In addition, QM/MM-EE self-consis-
tently updates the response of the electron density to the
external charges. However, QM/MM methods typically
neglect electronic polarization of the MM part, which should
lead to an overestimation of the effect of the MM charges.
Optimization schemes also underestimate effects of geometric
polarization as the geometry stays in the same local minima.

If a dielectric constant of four, as commonly used in
protein modeling, is introduced into the Coulomb expression
for electrostatic interactions, these effects decreases to 1/4.
ONIOM-EE should correctly indicate the presence and the
direction of protein electrostatic effects, but the effects are
likely to be overestimated, especially for distant residues.
ONIOM-ME neglects some effects while it may overestimate
others and only gives the correct energy if the total effect is

small or if there is a favorable cancelation of errors. In this
report results are given at the ONIOM-ME level, because
this is the level where all structures have been optimized.
Reaction steps where ONIOM-EE (still using ONIOM-ME
geometries) gives a significantly different description of the
relative energy are discussed separately in the text.

Models. The original design of the ONIOM system was
made to facilitate a comparison between previously published
active-site (B3LYP) and QM:MM (B3LYP:Amber) ap-
proaches. In the first series of ONIOM models (A-C), the
model system is identical to the corresponding active-site
model.9 Initially the model system includes Fe, a water
ligand, selected parts of the three amino acids His214,
Asp216, and His270 (Aspergillus nidulans numbering), and
the substrate (model A), see Figure 1. Model A contains 65
atoms including the link hydrogens. In the active-site study,
the water formed after O-O bond cleavage was removed
from the model because its mobility led to problems with
artificial hydrogen bonds. In the ONIOM setup the same
water was moved to the MM part in model B. For similar
reasons the substrate carboxylate was moved to the MM part
after �-lactam ring formation (model C). The changes in
ONIOM setup were made to enable a direct comparison
between the QM contribution in the active-site and the
ONIOM models and would not have been required in regular
ONIOM modeling. Model A is applied to stationary points
1-9 and uses QM charges calculated at point 1. Models B
(points 9-13) and C (points 13-18) use charges from
stationary points 9 and 13, respectively.

Scheme 2. Ligand Donor and Substrate Donor Mechanisms for Heterolytic O-O Bond Cleavage and �-Lactam Formation

Figure 1. ONIOM QM:MM models A and D. The high-level
part of model A includes all atoms in ball-and-stick represen-
tation, while the high-level part of model D additionally includes
residues in stick representation. Water molecules are num-
bered according to the PDB structure 1BLZ.
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In ONIOM model D, an extension of the QM part is made
by including selected parts of the side chains of Tyr189,
Arg279, and Ser281 and a water molecule interacting with
the substrate carboxylate, see Figure 1. The extension is made
in order to improve the description of the substrate donor
mechanism. The QM part of model D contains 103 atoms.
The QM charges are taken from the parametrization of model
A, and Amber charges are used for the newly added residues.
The procedure facilitates the comparisons between model
D and model A.

The setup of the real system of models A-D largely follows
the procedure used to study O2-binding in IPNS.39 A detailed
description is available in the Supporting Information. The
real system includes all protein atoms in the X-ray structure
and crystallographic water within 20 Å from iron. No solvent
water molecules were included, similar to a previous QM/
MM study of camphor hydroxylation in which no major
effect of solvent water could be observed.40 The real system
includes 5368 atoms, including hydrogens.

Investigations of the reaction mechanism were made with
a protein structure obtained by optimization of the X-ray
structure. During optimization of large systems, structural
changes may occur that are not directly related to the reaction
coordinate. To approximately handle these artificial changes,
iterations between reactant and product states were performed
until both had the same conformation of the protein environ-
ment. Transition states are also relaxed both in the forward
and backward direction. This does not prove that there is a
connection between reactant, transition state, and product,
but at least it gives an indication about the shape of the
potential energy surface. The improved ONIOM optimization
algorithm minimizes the number of bad steps and helps the
MM part to stay in the same local minimum during the
reaction.11

The static optimization procedure does not take into
consideration the possibility of changes in the protein
configuration or large movement of water molecules. In the
ligand donor mechanism, one of the reaction steps involves
a proton transfer from the substrate to an iron ligand through
a bridging water molecule. In the structure obtained by a
static QM:MM optimization, this reaction is highly unfavor-
able because there is no water molecule bridging the donor
and acceptor sites. To probe the possibility of other more
favorable water configurations, an alternative model setup,
based on a classical molecular dynamics simulation, was used
for the proton transfer step in the ligand donor mechanism
(model E).

Here an ensemble of starting geometries was obtained from
an MD simulation with the geometry of the QM part frozen
(details of the simulations are provided in the Supporting
Information). Calculations were performed using the program
NAMD2.41 After 2.5 ns of equilibration, a snapshot was
obtained each 50 ps for 500 ps, with one additional structure
selected after visual inspection of the trajectory. This gave
a total of 12 different starting structures with different
alignment of water molecules around the active site. Model
E uses the same high-level part as model B, but the real
system includes all protein atoms and all water molecules
with at least one atom within 15 Å from any high-level atom.

Atoms more than 12 Å from any high-level atom were kept
frozen to eliminate movement at the model surface.

Additional models have been used to analyze specific
reaction steps, but they only include minor modifications and
will therefore be introduced in the Results section.

3. Results

The effects of the protein will be described by following
the reaction from the iron-bound dioxygen species until the
formation of the thiazolidine ring. The term “protein effect”
is used for changes in relative energy when going from the
active-site model (without explicit treatment of the protein
matrix) to the QM:MM protein model. It is not a stringent
definition because it depends on the choice of model system.
In the present comparison, the active-site model only includes
a minimum amount of residues, and this should give large
protein effects.

Whether the protein effect is considered significant
depends on the properties of interest. If the purpose is to
propose a general reaction mechanism, a protein effect of a
few kcal/mol does not change the conclusions because the
high-level hybrid DFT method has an error of ∼5 kcal/mol,42

and the window for accepting mechanisms based on the
barrier height is therefore rather wide. However, when
discussing rates of competing reactions, a protein effect of
3 kcal/mol can determine the relative product distribution.

The biosynthesis of isopenicillin N involves a large number
of stationary points, and to facilitate the discussion each point
is assigned a number (appearing in bold face) according to
the order in which it appears along the reaction coordinate.
The nature of the stationary point is indicated with TS for a
transition state and INT for reaction intermediate. A left
superscript shows the spin multiplicity of the state. For
example, the label 53 TS is assigned to the third stationary
point on the quintet spin surface, which is a transition state.
Transition states have not been optimized for some minor
steps, e.g., bond rotation, and two intermediates may
therefore appear next to each other in the reaction energy
diagram.

3.1. Transition State for Cys-�-C-H Bond Activa-
tion. The reaction is initiated by binding of dioxygen to the
metal center. Our previous ONIOM QM:MM study showed
that explicit inclusion of the protein stabilized the O2-bound
state by 8-10 kcal/mol by improving the description of the
metal coordination geometry and the van der Waals interac-
tions.39 In the ONIOM model, binding of dioxygen was close
to thermoneutral (+1.0 for O2 bound end-on and +2.5 kcal/
mol for side-on binding). For completeness, the initial [Fe(II)
+ O2] state is included in the energy diagram, but to be
consistent with ref 9, the structure with O2 bound side-on
(71 Reactant) is taken as the zero-energy level in the energy
diagram below.

Oxygen binding gives a ferric superoxide where an
electron from iron has been transferred to an antibonding
π*-orbital on oxygen. Spectroscopic studies highlight the role
of charge donation from the ACV thiolate ligand that renders
the formation of the ferric superoxo complex energetically
more favorable.22 The six unpaired electrons required to form
the septet come from the parallel alignment of the unpaired
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spin on the superoxide with the spins from the five d-
electrons of Fe(III). As the quintet state is the most reactive
in C-H bond activation,9 the unpaired electron on the
superoxo must first flip, but this spin transition does not affect
the rate of the reaction.43 In the quintet spin state, the end-
on structure (52 INT) is the most stable, and this structure is
in good alignment to abstract hydrogen from the Cys
�-carbon.22 Compared to the active-site model, explicit
inclusion of the protein mainly affects the position of the
hydrophobic side chain of the valine and the orientation of
the amino acid ligands but has only small effects on the
alignment of the reactive superoxide or the cysteine part of
the substrate, see Figure 2.

After probing the reaction coordinate using the C1-H1
and the O2-H1 distances (see Figure 3 for labels), a
transition state for C-H bond activation (53 TS) could be
fully optimized in the “fully coupled macro/microiterative”
optimization scheme. The same method, i.e., initial mapping
of the reactive space using one or two reaction coordinates
followed by full optimization, has been used for all transition
states.

Compared to the end-on quintet state (52 INT), the relative
energy of the transition state 53 is 10.2 kcal/mol in the
ONIOM model compared to 11.7 kcal/mol in the active-site
model, see Figure 4. Using ONIOM-EE instead of ONIOM-
ME has a limited effect (+0.2 kcal/mol). The relatively small
effect of the protein environment on the C-H bond activation
step can be rationalized from the nature of the reaction. The
Mulliken spin populations, see Figure 3, show significant
spin (-0.39) building up on the Cys �-carbon, indicative of
a hydrogen atom transfer for which no large electrostatic
effects should be expected. Further, the reaction does not
require any major geometrical changes, and potential steric
effects of protein are limited. The structural differences in
the alignment of the valine side chain and the histidine
ligands are seen already in the reactant structure (compare
Figures 2 and 3) and should not affect the relative energy
between 52 INT and 53 TS.

Based on these considerations, the origin of the 1.5-kcal/
mol effect is not easy to pinpoint. The most significant

geometric effect is a decrease in the C-H bond distance
from 1.41 Å in the active-site structure to 1.36 Å with QM:
MM, leading to a shorter donor-acceptor distance that may
facilitate the reaction. In summary, the barrier of the C-H
bond activation step from 52 INT to 53 TS is mainly
determined by the electronic properties of the iron center
with only minor effects of the surrounding protein.

However, the total reaction barrier must be calculated from
the lowest preceding intermediate, which in both models still
is the state before oxygen binding, see Figure 4. As the QM:
MM model stabilizes the end-on quintet state by >10 kcal/
mol, the total C-H bond activation barrier in the QM:MM
model is only 11.8 kcal/mol. This step is proposed to be
partially rate limiting, and the barrier, as calculated by
transition state theory, should be close to 16.8 kcal/mol.44

The modeled reaction barrier is thus underestimated by 5
kcal/mol.

After passing the transition state, the system reaches a
ferrous peroxide [Fe(II)-OOH] intermediate (54 INT). For-
mation of this product requires that one proton and two
electrons are transferred from the substrate. This does not
contradict the observation that the transition state describes
hydrogen atom transfer, because intrinsic reaction coordinate
(IRC) calculations showed that the second electron is
transferred only after passing the transition state.9 The relative
energy of the ferrous peroxide intermediate is similar in
active-site and ONIOM-ME models when the preceding
intermediate 52 is used as reference, see Figure 4. However,
the protein effect of the “electron transfer” from substrate
to iron that occurs after 53 TS is not properly included in
any of these models. The effect on the relative energy of 54
INT of applying ONIOM-EE instead of ONIOM-ME is large,
approximately +8 kcal/mol, even after geometry relaxation
at the ONIOM-EE level.

3.2. Transition States for O-O Bond Cleavage -
Ligand Donor Mechanism. The next step in the reaction is
closing of the �-lactam ring together with formation of
[Fe(IV)doxo]. In the active-site study,9 a new mechanism
for O-O bond cleavage was proposed in which the water
ligand acts as a proton donor. The first step in this mechanism
is rotation of the peroxide (54f 55) to align the outer oxygen
in a position where it can accept a proton from the water
ligand. This bond rotation is slightly less exothermal (by 2.4
kcal/mol) than in the active-site model, because the QM:
MM model includes the original protein-carboxylate interac-
tions at the MM level, which prevents formation of artificial
hydrogen bonds between peroxide and substrate carboxylate,
see Figure 5. The same effect was seen in a larger active-
site model that included residues interacting with the
carboxylate (Tyr189, Arg279, and Ser281),9 but if the
purpose is simply to keep the hydrogen bond network intact
a QM:MM model is significantly cheaper than a large QM
model. The reason the energetic effect is still relatively small
is that a large part of the error in the active-site model
disappears when the solvent correction is included.

O-O bond cleavage in the ligand donor mechanism
proceeds by initial electron transfer from iron to an anti-
bonding O-O σ* orbital (56 TS). This process leads to a
shallow minimum with a long O-O bond (57 INT) that

Figure 2. Geometries and spin populations for the intermedi-
ate with end-on bound dioxygen in the quintet state (52 INT)
optimized using the active-site model (silver) and the ONIOM
QM:MM model (blue).
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quickly abstracts a proton from the water ligand and a second
electron from iron to form water, see ref 9 for details. O-O
bond cleavage is similarly described in the active-site and
the ONIOM models, but the orientation of the donating water
and the peroxide changes due to the difference in the initial
position of the peroxide, see Figure 3. The effect on the
relative energies is small with the barrier for 56 TS going
from 9.8 kcal/mol in the active-site model to 10.3 kcal/mol
in the ONIOM model, see Figure 4. The second transition

state (58 TS) disappears after adding corrections for thermal
effects and large basis, but whether the intermediate 57
appears on the calculated potential energy surface seems to
be determined by minor details, and for all practical purposes,
O-O bond heterolysis can be considered as a concerted
reaction.

The first step, from 55 INT to 56 TS, is an electron transfer
from iron to oxygen, and there is a non-negligible effect when
going to ONIOM-EE (+5.9 kcal/mol at the ONIOM-ME
geometry). Such a large effect would make this step
potentially rate limiting, but, as argued before, it is likely to
be overestimated.

The total O-O bond cleavage reaction is heterolytic and
leads to formation of a water molecule and an [HO-
Fe(IV)dO] intermediate (59). Unlike the previous reaction
steps, the protein effect is very large, -20.1 kcal/mol, see
Figure 4. The effect comes from interactions between the
released water and atoms outside the QM model. In the
active-site model the newly formed water bridged the val-
ine N-H group and the iron hydroxo ligand. In the ONIOM
model the same water makes hydrogen bonds with explicit
MM waters instead of the substrate, see Figure 6, which leads
to large effects on the reaction energy for this step. As a
general observation, release of a product shows large protein

Figure 3. Geometries and spin populations of the transition states for Cys-�-C-H bond activation 53 TS (left), initial O-O bond
cleavage in the ligand donor mechanism 56 TS (middle), and water formation 58 TS (right). The active-site model is shown in
silver, and the high-level part of the ONIOM QM:MM model is shown in blue.

Figure 4. Energy diagrams for formation of [Fe(IV)doxo] in the ligand donor mechanism. Energies calculated with the active-
site model are shown in gray, while energies from the ONIOM-ME QM:MM system are shown in blue.

Figure 5. The QM:MM model (right) avoids artificial hydrogen
bonds between peroxide and the valine carboxylate group in
the Fe(II)-OOH intermediate 55. The active-site model (left)
is optimized with atoms frozen in the position from the X-ray
structure (marked with X). The QM:MM model has the same
size of the QM region but includes MM residues hydrogen
bonding to the carboxylate in the QM:MM description (shown
in gray) as well as all other protein residues.

ONIOM QM:MM Modeling of Isopenicillin N Synthesis J. Chem. Theory Comput., Vol. 5, No. 1, 2009 227



effects due to explicit interactions with residues not included
in the active-site model. These effects are also sensitive to
the choice of mechanical or electronic embedding.

3.3. Transition State for �-Lactam Ring Formation -
Ligand Donor Mechanism. To conclude the formation of
the �-lactam ring, the valine N-H proton should be
transferred to the hydroxyl ligand at the same time as the
C-N bond of the four-membered �-lactam ring is formed,
see Scheme 2. However, the barrier for the first step in this
mechanism (510 TS) becomes unreasonably high (>45 kcal/
mol) in the original ONIOM model. The corresponding
barrier was ∼11 kcal/mol in the active-site model, so the
protein effect is >30 kcal/mol. The large effect is different
from what was observed for C-H bond activation (53 TS)
and O-O bond cleavage (56 and 58 TS) but similar to the
effect on the preceding water formation step. The reason is
that to function as a proton relay in 510 TS the QM water
must return to the position where it bridges the valine N-H
group and the hydroxo ligand. The QM:MM interactions that
stabilized water release are lost in the transition state, which
leads to an exceedingly high barrier.

A deficiency in the optimization approach is the relatively
static description of the protein that usually leads to small
changes in the position of different groups. This is prob-
lematic when handling potentially mobile water molecules.
In the ligand donor mechanism, the barrier for �-lactam ring
formation is sensitive to the position of a single water
molecule, exactly the kind of situation that the optimization
approach has problems to handle. It is possible that the
required bridging position is empty because water molecules
inside the protein simply cannot move to the desired position
during an optimization.

To find configurations where water is bridging the
substrate and the iron ligand, twelve snapshots were taken
from a molecular dynamics (MD) equilibration with the QM
coordinates frozen from 510 TS as described in the Com-
putational details (model E). Proton transfer barriers were
calculated by separately optimizing the reactant and a
transition state guess with frozen proton-transfer coordinates
from the MD snapshot.

This approach gave barriers ranging from 20.8 to 43.3 kcal/
mol, and the major difference comes from the low-level MM
contribution, see Figure 7. The large variability in the barrier
height reflects the number of conformations available for
water molecules around the active site, see Figure S1. Taking
the lowest barrier (snapshot at 2.75 ns) and performing a

full transition state optimization of the QM:MM model gives
a barrier of 20.7 kcal/mol. As an alternative, taking the
structure with the highest barrier for a single water bridge
(2.54 ns snapshot) and transferring the proton using one
additional QM water (model F) leads to an optimized barrier
of 21.0 kcal/mol, see Figure S2.

The calculated barrier of ∼21 kcal/mol is high compared
to the experimental limit of 17 kcal/mol, despite the fact that
performing the MD simulation with the QM geometry frozen
at the transition state could overestimate the stability of that
state and underestimate the barrier height. However, the
modeled reaction is restricted to residues in the QM system,
and alternative pathways may be available in the real protein.
The ligand donor mechanism can therefore not be excluded.
Instead, the most important conclusion is that barriers for
reactions involving mobile water molecules cannot be
consistently modeled with pure optimization schemes.

3.4. Transition States for O-O Bond Cleavage and
�-Lactam Formation - Substrate Donor Mechanism. The
most direct way to close the �-lactam ring is to use the valine
N-H proton during O-O bond cleavage, see Scheme 2.
Previous active-site investigations9,24 could not find a low-
energy path for the substrate donor mechanism. With
ONIOM model A the search for the substrate donor pathway
eventually led to the electron transfer required to weaken
the O-O bond, but the electron came from the substrate
carboxylate, not from iron. The observed reaction was
therefore decarboxylation rather than �-lactam formation.
From this observation it is clear that the problem with model
A (in active-site and ONIOM-ME) is that the ionization
potential of the carboxylate is underestimated unless its
hydrogen-bonding residues are included. To handle this
deficiency, the QM system is extended by including residues
closest to the valine carboxylate (Tyr189, Arg279, Ser281,
and W523), see model D in Figure 1. The same extension
of the active-site model in ref 9 would also have been
sufficient. This illustrates the importance of including a large
QM part in active-site and QM:MM-ME calculations. The
advantage of the QM:MM model is that it allows the
additional QM residues to move with the substrate without
the risk of creating new artificial hydrogen bonds.

Figure 6. Different alignment of the water formed after O-O
bond heterolysis, highlighted in green, in active-site and
ONIOM models. Selected water residues in the MM descrip-
tion are shown in stick representation.

Figure 7. Proton transfer barriers (510 TS ) for different
snapshots from a molecular dynamics trajectory. In the
snapshot at 2.7 ps, the QM barrier is high because the
accepting hydroxo ligand has lost its hydrogen bond to
Asp216.
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Starting from the [Fe(II)-OOH] intermediate 54, see Figure
8, the reaction proceeds through three separate transition
states, although no long-lived intermediate is expected to
appear along the pathway. The initial reaction coordinate is
elongation of the O-O bond, coupled to electron transfer
from iron. Passing 55S TS at an O-O bond distance of 1.73
Å, see Figure 9, has a barrier of 7.8 kcal/mol and leads to
an intermediate with a long (2.17 Å) O-O bond (56S INT).
The additional label S refers to intermediates appearing only
along the substrate donor pathway. Further O-O bond
elongation leads to a second electron transfer from iron to
the leaving hydroxyl, and the valine N-H proton is
transferred from the substrate to complete the formation of
water (57S TS). This leads to a high-energy ferryl-oxo
structure (58S INT) with a linear substrate that quickly
undergoes cyclization (59S TS) to form the �-lactam ring
(510S INT). All transition states along the pathway are shown
in Figure 9. The highest barrier, 9.3 kcal/mol, is observed
for proton transfer from the substrate (57S TS), while
cyclization, i.e., C-N bond formation (59S TS), has a barrier
of only 2.8 kcal/mol compared to the peroxide intermediate
54 INT, see Figure 10.

After formation of water and the �-lactam ring, the relative
energy of 510S INT is much higher than the energy of the
corresponding [Fe(IV)doxo] intermediate 513 INT along the
ligand donor pathway. In 510S the water formed during O-O
bond heterolysis remains in the hydrophobic pocket trans to
Asp216, but it is assumed that it can rearrange to reach the
low-energy structure observed in the ligand donor pathway.

To be able to directly compare the ligand and substrate
donor mechanisms, the former mechanism was reoptimized
using model D, see Figure 10. Compared to model A with
its smaller model system, the changes in transition state
barriers are relatively small (-0.3 kcal/mol for 56 TS and
-0.6 kcal/mol for 58 TS).

The barrier for O-O bond cleavage in the substrate donor
mechanism, 9.3 kcal/mol, is slightly lower than the highest
barrier in the ligand donor mechanism, 10.0 kcal/mol, see
Figure 10. Single point calculations using ONIOM-EE gives
a much larger difference in barrier height (8.5 kcal/mol),
mainly due to the electrostatic effects on O-O bond cleavage
in the ligand donor mechanism. Even if the effect is
overestimated, it is still likely that electrostatic interactions
favor the substrate donor pathway by a few kcal/mol.

3.5. Transition State for Val-�-C-H Bond Activa-
tion. After formation of the [Fe(IV)doxo] intermediate, the
reaction proceeds by C-H bond activation at the valine
�-carbon. Using the optimized structure obtained from
previous modeling (513 INT), the valine side chain must
rotate almost 180° to align the C-H bond toward the iron
center (514 INT). This is a difficult reaction to model, because
it could be accompanied by changes in the conformation of
the hydrophobic residues surrounding the side chain. In
ONIOM model C, which is similar to model A, the rotation
leads to movement of the newly formed water, but the
reaction energy for bond rotation is the same in the active-
site and ONIOM models (+0.9 kcal/mol).

Activation of the Val-�-C-H bond (515 TS) is a hydrogen
atom transfer, and the effect of the protein is expected to be
small, as it was for the activation of the corresponding Cys-
�-C-H bond. On the contrary, in ONIOM model C the
reaction barrier becomes 22.0 kcal/mol compared to 15.3
kcal/mol in the active-site model, see Figure 11. This is a
significant effect, but it makes the barrier much higher than
the experimental value of ∼17 kcal/mol for this partly rate-
limiting step.

What distinguishes this reaction from the previous C-H
bond activation (53 TS) is that it requires a large movement
of the substrate, because the valine side chain must approach
the oxo group. All comparisons of the optimized structures
from active-site and ONIOM models show large differences
in the alignment of the valine side chain, see e.g., Figure 2.
This is true also in the transition state 515 TS, although the
effect on the reaction coordinate is less obvious. The ONIOM
model has a longer C2-H3 distance and a slightly shorter
O1-H3 distance, see Figure 12.

In the active-site model the transition state was favored
by 3.5 kcal/mol by the IEFPCM solvent description because
the movement of the side chain leads to a more compact
QM region and therefore a decrease in the cavitation energy.
Explicit inclusion of the protein in model C instead disfavors
the transition state by 3.2 kcal/mol (+2.9 at the high level
and +0.3 kcal/mol from the low level). The sum of these
two effects leads to the large difference between the ONIOM
and the active-site model.

As the barrier in the ONIOM model is too high compared
to experiment, several attempts were made to find a lower
barrier. Applying model D with its larger QM part did not
change the total barrier from 513 INT, and the barrier was
not stabilized with ONIOM-EE (effect of +0.8 kcal/mol).
The reaction pathway was also optimized on the septet and
the triplet surfaces, but the barriers were higher in energy
(by 3.6 kcal/mol for 715 TS and by 3.7 kcal/mol for 315
TS).

In order to check for major errors in the structure, the
optimized structure of 513 INT was compared with an X-ray
structure of ACmC that forms an analogue of the monocyclic
�-lactam intermediate.27 The major structural differences are
in the arrangement of the water molecules. In the ONIOM
structure the newly formed water molecule is located close
to the oxo ligand trans to Asp216, but there is no water in
that position in the X-ray structure of the ACmC substrate.
Furthermore, there is no water in the corresponding pocket

Figure 8. Geometry and spin population of the [Fe(II)-OOH]
intermediate 54 optimized with ONIOM model D.
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in the X-ray structure with ACV and NO20 or in the structure
of the IPN product, see Figures S3 and S4.27 The presence
of a water molecule in that position was investigated by
classical MD simulations. In these simulations, the QM
region was kept frozen (except the water molecule and the
hydrophobic valine side chain). After a few picoseconds
water leaves its position close to the oxo group and does
not return. Details of the MD simulations are given in the
Supporting Information.

Consequently, it was assumed that the water molecule
leaves the active site through the channel occupied by

WAT544 and WAT560 in the X-ray structure, see Figure 6.
This process is difficult to model, and the water molecule
was simply removed from model D to form the new ONIOM
model G. Optimization of the C-H activation transition state
with the new model gave a total barrier of 20.4 kcal/mol,
1.6 kcal/mol lower than models with a water in close to the
oxo group, see Figure 11.

The product of the C-H bond activation is a ferric
hydroxo species and a substrate radical located on the valine-
�-carbon (716 INT). The relative energy of this intermediate
is rather similar in all different models.

3.6. Transition State for Thiazolidine Ring Forma-
tion. From the substrate radical state (516 INT ) the five-
membered thiazolidine ring can be formed by an attack of
the carbon radical on sulfur. Compared to the QM model,
the ONIOM transition state for C-S bond formation (517
TS) does not change much (from 2.73 Å in the active-site
model to by 2.71 Å), but the barrier drops from 4.5 to 1.5
kcal/mol compared to the preceding intermediate 516 INT.
A tentative explanation for the decrease in barrier is that the
protein favorably aligns the valine-�-carbon radical for a
reaction with the thiolate, see Figure 13. A geometric
indication is that the C-S distance in the reactant is 3.6 Å
in the protein and slightly longer in the active-site structure
(3.79 Å). The barrier height is sensitive to the choice of QM
model because in both models with larger QM part (D and

Figure 9. Close-ups of the transition states for heterolytic O-O bond cleavage and �-lactam formation in the “substrate donor”
mechanism. Labels show important bond distances in Å and Mulliken spin populations.

Figure 10. Energy diagram for formation of the �-lactam +
[Fe(IV)doxo] intermediate from [Fe(II)-OOH] in substrate and
ligand donor mechanisms using model D. The energies for
�-lactam ring closure in the ligand donor mechanism (thin
brown line) are taken from the active-site model.

Figure 11. Energy diagrams for Val-�-C-H bond activation
and thiazolidine ring closure with the active-site model and
ONIOM models C and G. Values of relative energies are
placed below the line for the active-site model, above the line
for ONIOM model C, and on the side for ONIOM model G.

Figure 12. Geometries and spin populations for the transition
state for Val-�-C-H bond activation (515 TS) optimized using
the active-site model (silver) and the ONIOM QM:MM model
C (blue).
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G), the barrier disappears after the basis set correction has
been applied, see Figure 11.

Formation of the thiazolidine ring includes a final electron
transfer from the thiolate to iron to regenerate Fe(II), and
again there is a significant difference between ONIOM-ME
and ONIOM-EE (+3-4 kcal/mol at the ONIOM-ME
geometry for different models).

Formation of the C-S bond creates the thiazolidine ring
and completes the formation of the bicyclic IPN product (518
INT). The reaction decreases the strength of the substrate-
metal coordination, and in all models the substrate loses its
coordination to iron. The energy of product formation is
rather different in the active-site and the ONIOM models,
see Figure 11. The ONIOM models give much shorter Fe-S
bond distances (3.2-3.5 Å) compared to the active-site
model (Fe-S distance of 4.2 Å).

However, the Fe-S distance is still much longer than in
the X-ray structure of the IPN product (Fe-S distance of
2.87 Å, see Figure S3). In the X-ray structure, the water
formed during the second part of the reaction has already
left the active site and iron is five-coordinated.27 This is
different from the final optimized structure 518 INT that still
has a hydroxyl ligand trans to Asp216. To complete the
enzymatic reaction the hydroxyl group should receive a
proton and form water. This proton is equivalent to the proton
lost from the thiol during the initial binding of ACV, but
these processes are not modeled because no proton acceptor/
donor was included in the QM part. Attempts to reproduce
the Fe-S distance in the product X-ray structure using a
model with a water ligand (model H) or a model with five-
coordinate iron (model I) did not succeed (Fe-S distances
>3.2 Å). The QM:MM models still has problems to describe
structures with very weak metal ligand interactions that are
balanced by large changes in the MM interactions during
substrate release.

4. Discussion

4.1. Transition State Effects. The reaction barrier is the
most common computational criterion when discriminating
between different reaction mechanisms. In the present study,
the ease in which transition states can be optimized allows

for a broad comparison of protein effects on different types
of transition states.

The effects of the protein in the current study are either
steric or electrostatic and can be rationalized by considering
whether the transition state involves large movements of the
substrate, or whether it involves electron transfer. In the
ONIOM-ME description, the protein effect is small (∼1-2
kcal/mol) for transition states, 53 (Cys-�-C-H bond activa-
tion), 56, and 58 (O-O bond cleavage), because they lead to
relatively small changes in the active site structure, see Figure
3. Although not compared to an active-site model, transition
states 55S and 57S (O-O bond cleavage) in Figure 9 also
belong to this category. Protein effects are larger (3-6 kcal/
mol) for transition states that involve movement of the
hydrophobic side chain, i.e., 515 (Val-�-C-H bond activation)
and 517 (thiazolidine ring formation), see Figures 12 and
13. The transition state for �-lactam ring closure, 59S in
Figure 9, is likely to belong to this category. The absolutely
largest protein effect is observed for the transition state 510
(proton transfer) that requires rearrangement of a mobile
water molecule, a situation that is not handled well with the
present approach.

In the single-point ONIOM-EE description, electrostatic
effects become significant (>4 kcal/mol) for the transition
states 56 (O-O bond cleavage) and 517 (thiazolidine ring
formation) that include electron transfer between substrate
and iron. In both cases the effect leads to an increase in the
barrier. The transition states for O-O bond cleavage in
the substrate donor mechanism (55S and 57S) also involve
electron transfer, but the effects of applying ONIOM-EE are
small. A rough rationalization of the electrostatic effects can
be made by considering the “direction” of electron transfer
relative to the electric field of the protein, see Figure 14.
The electrostatic interactions favor the substrate donor
pathway because the critical electron transfer from iron to
the antibonding O-O π* orbital proceeds perpendicular to
the electric field, while in the ligand donor mechanism it
proceeds partly in the direction of the electric field. Although
the electrostatic effects are difficult to calculate correctly,
control of the reactivity in IPNS by a directional electric

Figure 13. Reactant and transition state for thiazolidine ring
formation in the active-site model (left) and ONIOM model C
(right). The improved alignment of the substrate side chain in
the ONIOM model is highlighted in blue.

Figure 14. Cartoon to rationalize electrostatic effects on
electron transfer in the ONIOM-EE description. The red arrow
shows the rough direction of the electric field, while blue
arrows show the estimated “direction” of electron transfer.
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field is an interesting concept that requires a more careful
investigation.

In principle, both ligand and substrate donor routes could
be active as they lead to the same [Fe(IV)doxo] state (513
INT), assuming that there really is a proton transfer pathway
from substrate to the iron ligand W650. The difference
between the two mechanisms could become clearer by
studying the enzymatic reaction with the alternative ACOV
substrate. The major difference between the normal substrate
(ACV) and ACOV is that the latter lacks a valine N-H
proton. The substrate donor mechanism is therefore not
viable. Experimentally, reactions with ACOV lead to hy-
droxylation of the Cys-�-carbon, presumably by the iron
bound peroxide (54 INT).45 In the ligand donor mechanism,
the [Fe(IV)doxo] species (59 INT) can still be generated
without the substrate proton. If it can be shown that the ferryl-
oxo intermediate does not lead to hydroxylation of the Cys-
�-carbon, the ligand donor mechanism can be ruled out.

4.2. Other Significant Protein Effects. As the real
transition state barrier should be calculated against the lowest
preceding intermediate, relative energies of intermediates can
affect the rate of a reaction step. As an example, the barrier
for the first C-H bond activation step, 53 TS in Figure 4,
decreases significantly when the protein is included, mainly
due to the failures of the active-site model to describe O2

binding.39 In the present study, large effects on relative
energies are found for reactions involving formation of water
and the IPN product. These effects are handled mainly at
the MM level and are difficult to describe accurately.
Fortunately, the effects are not critical when determining the
reaction mechanisms because product formation is often
exothermal and the degree of exothermicity has no effect
on the barrier of the next step. As an example, the barrier
for Cys-�-C-H bond activation is not affected by the
calculated exothermicity of �-lactam formation.

Formation of the [Fe(II)-OOH] species (54 INT) shows
large electrostatic effects with ONIOM-EE because it
involves electron transfer from substrate to iron. As long as
peroxide formation is still an exothermal reaction, this should
not affect the rate of O-O bond cleavage.

4.3. Modeling Accuracy. Assuming that the two C-H
bond activation transition states both are partially rate-
limiting with barriers of ∼17 kcal/mol, the discrepancy
between experiment and calculation is 5 and 3 kcal/mol,
respectively. This is not considered a reason to re-evaluate
the mechanism, because 3-5 kcal/mol is within the expected
accuracy for density functional calculations of transition-
metal systems. The first C-H bond activation (53 TS) is a
simple hydrogen atom transfer from the substrate to the
superoxo radical, a reaction type for which DFT might
underestimate the barrier. The second C-H bond activation
(515 TS) is also a hydrogen atom transfer, but here the
reaction barrier is overestimated. A significant difference is
that this C-H bond activation requires a change in the
electronic configuration of the iron-oxo bond, a situation
where trends from simple organic reactions may no longer
hold. A possible reason for the too high barrier for 515 TS
is that the optimization to the closest local minimum may
not allow the protein model to relax properly. This could

overestimate the energy required to move the substrate
toward the oxo group.

There are also shortcomings in the description of the
protein interactions. As discussed in the Computational
details, mechanical embedding largely neglects protein effects
on electron transfer, while electronic embedding qualitatively
gives a better description of the direction of the electrostatic
effects but is likely to overestimate the effects due to lack
of polarization of the MM part. We are at present testing
improved optimization algorithms for electronic embedding
as well as two-layer DFT:DFTB46,47 and three-layer DFT:
DFTB:MM models that naturally include electronic polariza-
tion and charge transfer effects through an inexpensive QM
layer.

Another issue concerns the setup of the model, especially
water molecules whose positions are not well determined,
but still can have large effects in QM:MM calculations.48,49

This is illustrated by the large differences in barrier for water-
mediated proton transfer (510 TS, see Figure 7). A related
problem is the uncertainty in the position of the water
molecule formed after O-O bond heterolysis. In the present
static study, two alternatives have been accounted for, one
where the water is located close to the oxo group, and one
where it has been removed from the system. The latter choice
is supported by a separate molecular dynamics simulation.
It also leads to a lower barrier for C-H bond activation by
∼2 kcal/mol.

4.4. Catalytic Efficiency of the Metal Center. The low
barriers achieved with an active-site model indicated that
the main catalytic effect of IPNS comes from the metal
center. In principle agreement with experiment can be
achieved with a method that consequently underestimates
barriers together with a neglect of the “real” protein effects.
A QM/MM model that includes an explicit description of
the protein is therefore a better argument for the catalytic
proficiency of the nonheme iron center. The competence of
the metal center is also shown by the reactivity of biomimetic
complexes,17,50,51 although they do not show the same
efficiency and specificity as the enzymatic reactions.

4.5. Protein Control of IPNS Reactivity. Apart from the
initial O2-binding step, the suggested role of the protein in
IPNS is to control the reactivity of the metal center. One
example is the effect of the hydrophobic side chains that
orient the valine side chain in an orientation that is favorable
for thiazolidine ring formation. Although not important for
the total reaction rate, this protein effect may prevent side
reactions of the substrate radical. It has previously been
observed that mutations of the hydrophobic residue Leu223
lining the valine side chain leads to changes in the product
ratio for an alternative substrate.52 The conclusion was that
the bulky side chain hinders the rotation of the substrate in
the native enzyme. These two mechanisms may work
in concert to achieve high product and stereospecificity in
IPNS.53

An important result of the ONIOM calculations is the
detailed description of the substrate donor mechanism for
�-lactam formation. However, the reason this pathway could
be found was not the long-range protein effects but that the
QM:MM model made it easier to include residues close to
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the substrate while still keeping the hydrogen bonds intact
during �-lactam ring formation. The residues (Tyr189,
Arg279, Ser281, and W523) can have a role in preventing
side reactions, e.g., decarboxylation or cleavage of the C-C
bond between the carbonyl and the carboxylate.

5. Conclusions

With the new quadratically coupled QM/MM geometry
optimization algorithm it is feasible to locate transition states
in protein systems, similar as in single-layer QM calculations.
The optimization procedure allows for a direct evaluation
of protein effects on all the transition states appearing along
the reaction pathway of isopenicillin N synthase. The effects
are typically smaller than 4 kcal/mol and can be understood
by considering whether the transition state involves large
movements of the substrate and whether it involves electron
transfer.

The lack of major stabilizing protein effects on the rate-
limiting transition states of IPNS suggest that a large part of
the catalytic effect comes from the metal center. The
suggested role of the protein is to control the reaction and
achieve high product specificity. Hydrophobic residues align
the valine substrate radical in a favorable conformation for
thiazolidine ring closure and contribute to the product
selectivity and high stereospecificity of the reaction. An
interesting possibility that merits further investigation is that
the mechanism for heterolytic O-O bond cleavage is
determined by the direction of the electric field at the active
site.

A detailed comparison of the polarization/charge transfer
effects in the ONIOM QM:MM-EE, QM:QM, and QM:QM:
MM models will be presented in a separate paper. Another
extension is to include statistical averaging of the protein
effects over an ensemble of MM configurations. Detailed
studies on this aspect using free-energy perturbation and other
methods will also be discussed separately.
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Farkas, Ö.; Schlegel, H. B. J. Am. Chem. Soc. 2002, 124,
192–193.

(33) Vreven, T.; Morokuma, K. Theo. Chem. Acc. 2003, 109, 125–
132.

(34) Li, J.; Cross, J. B.; Vreven, T.; Meroueh, S. O.; Mobashery,
S.; Schlegel, H. B. Proteins 2005, 61, 246–257.

(35) Yoshizawa, K.; Shiota, Y. J. Am. Chem. Soc. 2006, 128,
9873–9881.

(36) Godfrey, E.; Porro, C. S.; de Visser, S. P. J. Phys. Chem. A
2008, 112, 2464–2468.

(37) Frisch, M. J. ; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.;
Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.;
Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi,
M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Strat-
mann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,
C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.;
Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople,

J. A. Gaussian DeVelopment Version; Gaussian, Inc.:
Wallingford, CT, 2008.

(38) Bakowies, D.; Thiel, W. J. Phys. Chem. 1996, 100, 10580–
10594.

(39) Lundberg, M.; Morokuma, K. J. Phys. Chem. B 2007, 111,
9380–9389.

(40) Altun, A.; Shaik, S.; Thiel, W. J. Comput. Chem. 2006, 27,
1324–1337.

(41) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid,
E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K.
J. Comput. Chem. 2005, 26, 1781–1802.

(42) Siegbahn, P. E. M. J. Biol. Inorg. Chem. 2006, 11, 695–
701.

(43) Bassan, A.; Borowski, T.; Siegbahn, P. E. M. Dalton Trans.
2004, 20, 3153–3162.

(44) Kriauciunas, A.; Frolik, C. A.; Hassell, T. C.; Skatrud, P. L.;
Johnson, M. G.; Holbrok, N. I.; Chen, V. J. J. Biol. Chem.
1991, 266, 11779–11788.

(45) Ogle, J. M.; Clifton, I. J.; Rutledge, P. J.; Elkins, J. M.;
Burzlaff, N. I.; Adlington, R. M.; Roach, P. L.; Baldwin, J. E.
Chem. Biol. 2001, 8, 1231–1237.

(46) Zheng, G.; Witek, H.; Bobadova-Parvanova, P.; Irle, S.;
Musaev, D. G.; Prabhakar, R.; Morokuma, K.; Lundberg, M.;
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